Synthesis 2006(22): 3790-3794  
DOI: 10.1055/s-2006-950329
PAPER
© Georg Thieme Verlag Stuttgart · New York

Palladium Nanoparticles in Polymers: Catalyst for Alkene Hydrogenation, Carbon-Carbon Cross-Coupling Reactions, and Aerobic Alcohol Oxidation

Cheon Min Park, Min Serk Kwon, Jaiwook Park*
Center for Integrated Molecular System, Department of Chemistry, Pohang University of Science and Technology, San 31 Hyojadong, Pohang, Kyeongbuk 790-784, Republic of Korea
Fax: +82(54)2793399; e-Mail: pjw@postech.ac.kr;
Further Information

Publication History

Received 2 June 2006
Publication Date:
20 October 2006 (online)

Abstract

A new recyclable palladium catalyst was synthesized by a simple procedure from readily available reagents, which is composed of palladium nanoparticles dispersed in an organic polymer. This catalyst is robust, and highly active in many organic transformations including alkene and alkyne hydrogenation, carbon-carbon cross-coupling reactions, and aerobic alcohol oxidation.

7

Pd nanoparticles were generated from Pd(PPh3)4 in a mixture of butan-1-ol and THF before the polymerization with AIBN.

9

Ph3PO was recovered from the filtrate in more than 90% yield.

10

In the cases of butan-2-ol and tetra(ethylene glycol), the resulting catalysts showed 26% of the activity of 1 and 44%, respectively.

11

In the combinations of methacrylic acid and ethylene glycol dimethacrylate, methyl acrylate and ethylene glycol dimethacrylate, and acrylamide and 2,3-dimethylbuta-1,3-diene, the resulting catalysts showed 22% of the activity of 1, 34%, 3%, respectively.

12

In the filtrate, neither Ph3P nor Ph3PO were detected by 1H NMR spectroscopy, and Pd was not detected by ICP analysis.

13

The filtrate was clear and colorless. Thus, the Pd content in the catalyst was estimated by assuming that all the Pd in the Pd(PPh3)4 was entrapped in the catalyst.