Synlett 2008(2): 151-163  
DOI: 10.1055/s-2007-1000884
ACCOUNT
© Georg Thieme Verlag Stuttgart · New York

Adventures in Inner Space: Microflow Systems for Practical Organic Synthesis

Takahide Fukuyama, Md. Taifur Rahman, Masaaki Sato, Ilhyong Ryu*
Department of Chemistry, Faculty of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
Fax: +81(72)2549695; e-Mail: ryu@c.s.osakafu-u.ac.jp;
Weitere Informationen

Publikationsverlauf

Received 2 June 2007
Publikationsdatum:
21. Dezember 2007 (online)

Abstract

This account presents an overview of our recent endeavors to achieve practical organic syntheses using a variety of microreaction devices. Herein are our achievements in ionic liquid-based catalytic reactions, photochemical transformation, and heterogenous hydrogenation reactions, where flow regime precisely controls residence time and product selectivity.

1 Introduction

2 Cross-Coupling Reactions Using Ionic Liquids and Microflow Systems

2.1 The Sonogashira Coupling Reaction in a Microreaction System

2.2 The Mizoroki-Heck Reaction in an Automated Microflow Production System

2.3 Carbonylation in an Ionic Liquid and Application to a Microflow System

3 Photo- and Radical Reactions in a Microflow System

4 Gas-Liquid-Solid Triphasic Catalytic Reactions in a Microflow System

5 Conclusion

    References

  • For recent reviews and books on microchemical technology, see:
  • 1a Ehrfeld W. Hessel V. Löwe H. Microreactor: New Technology for Modern Chemistry   Wiley-VCH; Weinheim: 2000. 
  • 1b Fletcher PDI. Haswell SJ. Pombo-Villar E. Warrington BH. Watts P. Wong SYF. Zhang X. Tetrahedron  2002,  58:  4735 
  • 1c Hessel V. Hardt S. Löwe H. Chemical Micro Process Engineering   Wiley-VCH; Weinheim: 2004. 
  • 1d Jähnisch K. Hessel V. Löwe H. Baerns M. Angew. Chem. Int. Ed.  2004,  43:  406 
  • 1e Kirschning A. Jas G. Top. Curr. Chem.  2004,  242:  209 
  • 1f Watts P. Haswell SJ. Chem. Soc. Rev.  2005,  34:  235 
  • 1g Doku GN. Verboom W. Reinhoudt DN. Berg AVD. Tetrahedron  2005,  61:  2733 
  • 1h Geyer K. Codée JDC. Seeberger PH. Chem. Eur. J.  2006,  12:  8434 
  • 1i de Mello AJ. Nature (London)  2006,  442:  394 
  • 1j Kobayashi J. Mori Y. Kobayashi S. Chem. Asian J.  2006,  1:  22 
  • 1k Ahmed-Omer B. Brandt JC. Wirth T. Org. Biomol. Chem.  2007,  5:  733 
  • For very recent advances in microreactor/organic synthesis, see:
  • 2a Usutani H. Tomida Y. Nagaki A. Okamoto H. Nokami T. Yoshida J. J. Am. Chem. Soc.  2007,  129:  3046 
  • 2b Sahoo RH. Kralj JG. Jensen KF. Angew. Chem. Int. Ed.  2007,  46:  5704 
  • 2c Tanaka K. Motomatsu S. Koyama K. Tanaka S. Fukase K. Org. Lett.  2007,  9:  299 
  • 2d Carrel FR. Geyer K. Codée JDC. Seeberger PH. Org. Lett.  2007,  9:  2285 
  • For large-scale synthesis by numbering-up of microreactors, see:
  • 3a Taghavi-Moghadam S. Kleemann A. Golbig KG. Org. Process Res. Dev.  2001,  5:  652 
  • 3b Wakami H. Yoshida J. Org. Process Res. Dev.  2005,  9:  787 ; and references cited therein
  • 3c Iwasaki T. Kawano N. Yoshida J. Org. Process Res. Dev.  2006,  10:  1126 
  • For space-time yields in microreactors, see:
  • 4a Kestenbaum H. de Oliveira AL. Schmidt W. Schüth F. Ehrfeld W. Gebauer K. Löwe H. Richter T. Lebiedz D. Untiedt I. Züchner H. Ind. Eng. Chem. Res.  2002,  41:  710 
  • 4b Löb P. Löwe H. Hessel V. J. Fluorine Chem.  2004,  125:  1677 
  • For leading work, see:
  • 5a Wießmeier G. Hönicke D. Ind. Eng. Chem. Res.  1996,  35:  4412 
  • 5b Wießmeier G. Hönicke D. J. Micromech. Microeng.  1996,  6:  285.  Also see refs. 41-46
  • 6a Miwa S. Eswaramoorthy M. Nair J. Raj A. Itoh N. Shoji H. Namba T. Mizukami F. Science (Washington, D.C.)  2002,  295:  105 
  • 6b Basheer C. Swaminathan S. Lee HK. Valiyaveettil S. Chem. Commun.  2005,  409 
  • 7a Greenway GM. Haswell SJ. Morgan DO. Skelton V. Styring P. Sens. Actuators, B  2000,  63:  153 
  • 7b Uozumi Y. Yamada YMA. Beppu T. Fukuyama N. Ueno M. Kitamori T. J. Am. Chem. Soc.  2006,  128:  15994 
  • 8 Haswell SJ. O’Sullivan B. Styring P. Lab Chip  2001,  1:  164 
  • 9 Green Reaction Media in Organic Synthesis   Mikami K. Blackwell Publishing; Oxford: 2005. 
  • 10a Ionic Liquids in Synthesis   Wasserscheid P. Welton T. Wiley-VCH; Weinheim: 2003. 
  • 10b Ionic Liquids as Green Solvents: Progress and Prospect   Rogers R. D. Seddon K. R. ACS Symposium Series 856, American Chemical Society: 2003. 
  • 10c Welton T. Chem. Rev.  1999,  99:  2071 
  • 10d Wasserscheid P. Keim W. Angew. Chem., Int. Ed. Engl.  2000,  39:  3772 
  • 10e Gordon CM. Appl. Catal., A  2001,  222:  101 
  • 10f Sheldon R. Chem. Commun.  2001,  2399 
  • 10g Dupont J. de Souza RF. Suarez PAZ. Chem. Rev.  2002,  102:  3667 
  • 10h Welton T. Coord. Chem. Rev.  2004,  248:  2459 
  • 10i Fukuyama T. Ryu I. J. Synth. Org. Chem. Jpn.  2005,  63:  503 
  • 11a Sonogashira K. Tohda Y. Hagihara N. Tetrahedron Lett.  1975,  4467 
  • For reviews, see:
  • 11b Sonogashira K. In Comprehensive Organic Synthesis   Vol. 3:  Trost BM. Fleming I. Pergamon Press; New York: 1991.  p.521-549  
  • 11c Sonogashira K. In Metal-Catalyzed Cross-Coupling Reactions   Diederich F. Stang PJ. Wiley-VCH; New York: 1998.  p.203-229  
  • 11d Doucet H. Hierso J.-C. Angew. Chem. Int. Ed.  2007,  46:  834 
  • 12 Fukuyama T. Shinmen M. Nishitani S. Sato M. Ryu I. Org. Lett.  2002,  4:  1691 
  • 13 For a very recent report on copper-free Sonogashira reactions in high-pressure, high-temperature water in a microfluidic system, see: Kawanami H. Matsushima K. Sato M. Ikushima Y. Angew. Chem. Int. Ed.  2007,  46:  5129 
  • For recent examples of homogenous catalysis using microreactors, see:
  • 14a Basheer C. Hussain FSJ. Lee HK. Valiyaveettil S. Tetrahedron Lett.  2004,  45:  7297 
  • 14b Comer E. Organ MG. J. Am. Chem. Soc.  2005,  127:  8160 
  • 14c Mauger C. Buisine O. Caravieilhes S. Mignani G. J. Organomet. Chem.  2005,  690:  3629 
  • 14d Basheer C. Vetrichelvan M. Suresh V. Lee HK. Tetrahedron Lett.  2006,  47:  957 
  • 14e Mikami K. Yamanaka M. Islam MN. Tonoi T. Itoh Y. Shinoda M. Kudo K. J. Fluorine Chem.  2006,  127:  592 
  • 15 For the use of microreactors for polyphasic metal-catalyzed hydrogenation and isomerization reactions, see: de Bellefon C. Tanchoux N. Caravieilhes S. Grenouillet P. Hessel V. Angew. Chem. Int. Ed.  2000,  39:  3442 
  • 17 Liu S. Fukuyama T. Sato M. Ryu I. Org. Process Res. Dev.  2004,  8:  477 
  • For the Mizoroki-Heck reaction, see:
  • 18a Beletskaya IP. Cheprakov AV. Chem. Rev.  2000,  100:  3009 
  • 18b Alonso F. Beletskaya IP. Yus M. Tetrahedron  2005,  61:  11771 
  • For recent work on Mizoroki-Heck reactions in ionic liquids, see:
  • 18c Carmichael AJ. Earle MJ. Holbrey JD. McCormac PB. Seddon KR. Org. Lett.  1999,  1:  997 
  • 18d Böhm VPW. Herrmann WA. Chem. Eur. J.  2000,  6:  1017 
  • 18e Xu L. Chen W. Xiao J. Organometallics  2000,  19:  1123 
  • 18f Calò V. Nacci A. Lopez L. Mannarini N. Tetrahedron Lett.  2000,  41:  8973 
  • 18g Selvakumar K. Zapf A. Beller M. Org. Lett.  2002,  4:  3031 
  • 18h Park SB. Alper H. Org. Lett.  2003,  5:  3209 
  • 19a Suarez PAZ. Einloft S. Dullius JEL. de Souza RF. Dupont J. J. Chim. Phys. Phys.-Chim. Biol.  1998,  95:  1626 
  • 19b Bonhôte P. Dias AP. Papageorgion A. Kalyanasundaram K. Grätzel M. Inorg. Chem.  1996,  35:  1168 
  • 20 For palladium-catalyzed coupling reactions using low-viscosity ionic liquid [bmim]NTf2, see: Liu S. Fukuyama T. Sato M. Ryu I. Synlett  2004,  1814 
  • 21 Fukuyama T. Yamaura R. Ryu I. Can. J. Chem.  2005,  83:  711 
  • 22 At 295 K and 1.0 bar CO, solubility in [bmim]PF6 is 1.47 mM, whereas for toluene it is 7.3 mM. For details, see: Ohlin CA. Dyson PJ. Laurenczy G. Chem Commun.  2004,  1070 
  • 23 Rahman MT. Fukuyama T. Kamata N. Sato M. Ryu I. Chem. Commun.  2006,  2236 . The residence time was calculated by dividing the total volume of the residence time unit (tube reactor) by the combined flow rates (substrate + ionic liquid + gas flow rates). These are calculated values (thus approximated), not absolute
  • 24a Ozawa F. Soyama H. Yamamoto T. Yamamoto A. Tetrahedron Lett.  1982,  23:  3383 
  • 24b Ozawa F. Soyama H. Yanagihara H. Aoyama I. Takino H. Izawa K. Yamamoto T. Yamamoto A. J. Am. Chem. Soc.  1985,  107:  3235.  For a review, see:
  • 24c Yamamoto A. Yamamoto T. Ozawa F. Pure Appl. Chem.  1985,  57:  1799 
  • 25a Miller PW. Long NJ. de Mello AJ. Vilar R. Passchier J. Gee A. Chem. Commun.  2006,  546 
  • 25b Miller PW. Long NJ. de Mello AJ. Vilar R. Audain H. Bender D. Passchier J. Gee A. Angew. Chem. Int. Ed.  2007,  46:  2875 
  • 26 Murphy ER. Martinelli JR. Zaborenko N. Buchwald SL. Jensen KF. Angew. Chem. Int. Ed.  2007,  46:  1734 
  • For plug flow in microflow synthesis, see:
  • 27a Burns JR. Ramshaw C. Lab Chip  2001,  1:  10 
  • 27b Song H. Tice JD. Ismagilov RF. Angew. Chem. Int. Ed.  2003,  42:  768 
  • 27c Yen BKH. Günther A. Schmidt MA. Jensen KF. Bawendi MG. Angew. Chem. Int. Ed.  2005,  44:  5447 
  • 27d Ahmed B. Barrow D. Wirth T. Adv. Synth. Catal.  2006,  348:  1043 
  • 28a Handbook of Organic Photochemistry and Photobiology   Horspool W. CRC Press; Boca Raton: 1995. 
  • 28b Handbook of Organic Photochemistry and Photobiology   2nd ed.:  Horspool W. Lenci F. CRC Press; Boca Raton: 2004. 
  • 29 Lu H. Schmidt MA. Jensen KF. Lab Chip  2001,  1:  22 
  • For recent reports on photoreactions using microflow, see:
  • 30a cyanation of pyrene: Ueno K. Kitagawa F. Kitamura N. Lab Chip  2002,  2:  231 
  • 30b photochlorination of 2,4-diisocyanatotoluene: Ehrich H. Linke D. Morgenschweis K. Baerns M. Jähnisch L. Chimia  2002,  56:  647 
  • 30c generation of singlet oxygen and [4+2] cycloaddition with dienes: Wootton RCR. Fortt R. de Mello AJ. Org. Process Res. Dev.  2002,  6:  187 
  • 30d photochemical [2+2] cycloaddition: Maeda H. Mukae H. Mizuno K. Chem. Lett.  2005,  34:  66 
  • 30e photocatalytic redox-combined synthesis of l-pipecolinic acid: Takei G. Kitamori T. Kim H.-B. Catal. Commun.  2005,  6:  357 
  • 30f photocatalytic reduction: Matsushita Y. Kumada S. Wakabayashi K. Sakeda K. Ichimura T. Chem. Lett.  2006,  35:  410 
  • For reviews on photochemical [2+2] cycloaddition, see:
  • 31a Crimmins MT. Reinhold TL. Org. React.  1993,  44:  296 
  • 31b Bach T. Synthesis  1998,  683 . For earlier work on photochemical [2+2] cycloaddition using cyclohexenones, see:
  • 31c Corey EJ. Bass JD. LeMahieu R. Mitra RB. J. Am. Chem. Soc.  1964,  86:  5570 
  • 33 Fukuyama T. Hino Y. Kamata N. Ryu I. Chem. Lett.  2004,  33:  1430 
  • 34a Barton DHR. Pure Appl. Chem.  1968,  16:  1 
  • 34b Studer A. Chem. Eur. J.  2001,  7:  1159 
  • 35 Konoike T. Takahashi K. Araki Y. Horibe I. J. Org. Chem.  1997,  62:  960 
  • 37 Sugimoto A. Takagi M. Sumino Y. Fukuyama T. Ryu I. Tetrahedron Lett.  2006,  47:  6197 
  • 38 Radicals in Organic Synthesis   Vols. 1 and 2:  Renaud P. Sibi MP. Wiley-VCH; Weinheim: 2001. 
  • 41a Losey VR. Jackman J. Firebaugh SL. Schmidt MA. Jensen KF. J. Microelectromech. Syst.  2002,  11:  709 
  • 41b Ajmera SK. Delattre C. Schmidt MA. Jensen KF. Stud. Surf. Sci. Catal.  2001,  145:  97 
  • 42 Kobayashi J. Mori Y. Okamoto K. Akiyama R. Ueno M. Kitamori T. Kobayashi S. Science (Washington, D.C.)  2004,  304:  1305 
  • 43 Kobayashi J. Mori Y. Kobayashi S. Adv. Synth. Catal.  2005,  347:  1889 
  • 44 Kobayashi J. Mori Y. Kobayashi S. Chem. Commun.  2005,  2567 
  • 45 Yoswathananont N. Nitta K. Nischiuchi Y. Sato M. Chem. Commun.  2005,  40 
  • 46 For hydrogenation in a microflow system based on a similar concept, see: Saaby S. Knudsen KR. Ladlow M. Ley SV. Chem. Commun.  2005,  2909 
16

Manuscript in preparation.

32

The photomicroreactor, Mikroglas Dwell Device, was purchased from Mikroglas Chemtech GmbH. FOTURAN® glass allows light with λ > 250 nm to be transmitted.

36

The photomicroreactor was generously provided by Dainippon Screen Mfg. Co., Ltd.

39

The MiChS micromixer (type-α) was obtained from MiChS Co. Ltd., Japan.

40

Fukuyama, T.; Kobayashi, M.; Rahman, M. T.; Kamata, N.; Ryu, I. to be published.

47

Yoswathananont, N.; Nitta, K.; Mima, J.; Sato, M. to be published.