Abstract
Tetrahydro-4H -thiopyran-4-one was prepared in >75% yield by treatment of dimethyl 3,3′-thiobispropanoate
with NaOMe (generated in situ) in THF solution and decarboxylation of the resulting
methyl tetrahydro-4-oxo-2H -thiopyran-3-carboxylate in refluxing 10% aqueous H2 SO4 . Reaction of tetrahydro-4H -thiopyran-4-one with Me3 SiCl and Et3 N in CHCl3 gave the corresponding trimethylsilyl enol ether in near quantitative yield. The
prepared reagents are useful for the synthesis of thiopyran-containing compounds.
Key words
tetrahydro-4H -thiopyran-4-one - 4-thianone - heterocyclic ketone - Dieckmann cyclization - thiopyran
synthesis
References
<A NAME="RM06106SS-1A">1a </A>
Press JB.
Russell RK.
Christiaens LEE. In
Comprehensive Heterocyclic Chemistry II
Vol. 2:
Bird CW.
Elsevier;
Oxford:
1997.
<A NAME="RM06106SS-1B">1b </A>
Ingall AH. In
Comprehensive Heterocyclic Chemistry II
Vol. 5:
McKillop A.
Pergamon;
Oxford:
1997.
<A NAME="RM06106SS-1C">1c </A>
Vedejs E.
Krafft GA.
Tetrahedron
1982,
38:
2857
For an overview and list of references, see:
<A NAME="RM06106SS-2A">2a </A>
Samuel R.
Nair SK.
Asokan CV.
Synlett
2000,
1804
<A NAME="RM06106SS-2B">2b </A>
Ward DE.
Gai Y.
Lai Y.
Synlett
1996,
261
<A NAME="RM06106SS-3">3 </A> Review:
Vartanyan RS.
Arm. Khim. Zh.
1985,
38:
166
<A NAME="RM06106SS-4">4 </A> Aldrich Chemical Co., 2005-2006: Cdn $174/5 g of 3 . Using the procedure described herein, we estimate the cost of materials (solvents,
reagents and other materials) for the preparation of 3 to be ca. $1/g (50 g scale)
<A NAME="RM06106SS-5A">5a </A>
Ward DE.
Guo C.
Sasmal PK.
Man CC.
Sales M.
Org. Lett.
2000,
2:
1325
<A NAME="RM06106SS-5B">5b </A>
Ward DE.
Sales M.
Man CC.
Shen J.
Sasmal PK.
Guo C.
J. Org. Chem.
2002,
67:
1618
<A NAME="RM06106SS-5C">5c </A>
Ward DE.
Jheengut V.
Akinnusi OT.
Org. Lett.
2005,
7:
1181
<A NAME="RM06106SS-5D">5d </A>
Ward DE.
Gillis HM.
Akinnusi OT.
Rasheed MA.
Saravanan K.
Sasmal PK.
Org. Lett.
2006,
8:
2631
From N -methyl-4-piperidone:
<A NAME="RM06106SS-6A">6a </A>
Johnson PY.
Berchtold GA.
J. Org. Chem.
1970,
35:
584
<A NAME="RM06106SS-6B">6b </A>
Unkovskii BV.
Psal’ti FI.
Khim. Geterotsikl. Soedin., Sb.
1970,
2:
174 ; Chem. Abstr. 1972 , 77 , 114188
<A NAME="RM06106SS-6C">6c </A>
Garst ME.
McBride BJ.
Johnson AT.
J. Org. Chem.
1983,
48:
8
From 1,5-dibromo-3-pentanone:
<A NAME="RM06106SS-6D">6d </A>
Sviridov SV.
Vasilevskii DA.
Kulinkovich OG.
Zh. Org. Khim.
1991,
27:
1431
<A NAME="RM06106SS-7A">7a </A>
Bennett GM.
Scorah LVD.
J. Chem. Soc.
1927,
194
<A NAME="RM06106SS-7B">7b </A>
Fehnel EA.
Carmack M.
J. Am. Chem. Soc.
1948,
70:
1813
<A NAME="RM06106SS-8A">8a </A>
Naylor RF.
J. Chem. Soc.
1949,
2749
<A NAME="RM06106SS-8B">8b </A>
Onesta R.
Castelfranchi G.
Gazz. Chim. Ital.
1959,
89:
1127
<A NAME="RM06106SS-8C">8c </A>
Casy G.
Sutherland AG.
Taylor RJK.
Urben PG.
Synthesis
1989,
767
<A NAME="RM06106SS-8D">8d </A>
Rule NG.
Detty MR.
Kaeding JE.
Sinicropi JA.
J. Org. Chem.
1995,
60:
1665
<A NAME="RM06106SS-8E">8e </A>
Matsuyama H.
Miyazawa Y.
Takei Y.
Kobayashi M.
J. Org. Chem.
1987,
52:
1703
<A NAME="RM06106SS-8F">8f </A>
Chowdhury AZMS.
Khandker MMR.
Bhuiyan MMH.
Hossain MK.
Pak. J. Sci. Ind. Res.
2001,
44:
63
<A NAME="RM06106SS-9A">9a </A>
Barkenbus C.
Midkiff VC.
Newman RM.
J. Org. Chem.
1951,
16:
232
<A NAME="RM06106SS-9B">9b </A>
Traverso G.
Chem. Ber.
1958,
91:
1224
<A NAME="RM06106SS-9C">9c </A>
Parham WE.
Christensen L.
Groen SH.
Dodson RM.
J. Org. Chem.
1964,
29:
2211
<A NAME="RM06106SS-9D">9d </A>
Harada K,
Suginose R, and
Kashiwagi K. inventors; Japanese Patent 99198350.
; Chem. Abstr. 2001 , 134 : 131428
<A NAME="RM06106SS-10A">10a </A> Commercially available (e.g., Aldrich Chemical Co., 2005-2006: Cdn $70/L) or
readily prepared from methyl acrylate and H2 S:
Gershbein LL.
Hurd CD.
J. Am. Chem. Soc.
1947,
69:
241
<A NAME="RM06106SS-10B">10b </A>
See also ref. 8e.
<A NAME="RM06106SS-11A">11a </A>
Kashiwagi T,
Murakami M,
Isaka I, and
Ozasa T. inventors; Japanese Patent 74 108119.
; Chem. Abstr. 1976 , 85 : 78006
<A NAME="RM06106SS-11B">11b </A>
Duus F.
Tetrahedron
1981,
37:
2633
<A NAME="RM06106SS-11C">11c </A>
Liu HJ.
Ngooi TK.
Can. J. Chem.
1982,
60:
437
<A NAME="RM06106SS-11D">11d </A>
Dowd P.
Choi SC.
Tetrahedron
1991,
47:
4847
<A NAME="RM06106SS-11E">11e </A>
Tamai S.
Ushirogochi H.
Sano S.
Nagao Y.
Chem. Lett.
1995,
295
<A NAME="RM06106SS-11F">11f </A>
Ghosh AK.
Liu W.
J. Org. Chem.
1995,
60:
6198
<A NAME="RM06106SS-11G">11g </A>
Conroy JL.
Sanders TC.
Seto CT.
J. Am. Chem. Soc.
1997,
119:
4285
<A NAME="RM06106SS-11H">11h </A>
Li C.-J.
Chen D.-L.
Synlett
1999,
735
<A NAME="RM06106SS-12">12 </A>
A reaction using 1.1 equiv of NaOMe did not go to completion within 5 h (ca. 90% conversion).
<A NAME="RM06106SS-13A">13a </A>
Aoki S.
Fujimura T.
Nakamura E.
J. Am. Chem. Soc.
1992,
114:
2985
<A NAME="RM06106SS-13B">13b </A>
Evans PA.
Modi DP.
J. Org. Chem.
1995,
60:
6662
<A NAME="RM06106SS-13C">13c </A>
Biondi S.
Piga E.
Rossi T.
Vigelli G.
Bioorg. Med. Chem. Lett.
1997,
7:
2061
<A NAME="RM06106SS-13D">13d </A>
Karisalmi K.
Rissanen K.
Koskinen AMP.
Org. Biomol. Chem.
2003,
1:
3193
<A NAME="RM06106SS-13E">13e </A>
Karisalmi K.
Koskinen AMP.
Nissinen M.
Rissanen K.
Tetrahedron
2003,
59:
1421
<A NAME="RM06106SS-14">14 </A>
House HO.
Czuba LJ.
Gall M.
Olmstead HD.
J. Org. Chem.
1969,
34:
2324
<A NAME="RM06106SS-15">15 </A>
Na metal was cut into pieces weighing ca. 50-100 mg (3-5 mm per side). The rate of
Na consumption depends on the size of pieces; with larger pieces, more time is required
to reach 90% conversion.
<A NAME="RM06106SS-16">16 </A>
A few specks of Na metal may remain at this point.
<A NAME="RM06106SS-17">17 </A>
The presence of small amounts of 1 (<1%) and its corresponding half-acid (1-2%) were detected by 13 C NMR and confirmed by spiking with authentic samples.