Abstract
An efficient and reliable method to synthesize 2,6-bis(trifluoroacetyl)phenols bearing
various substituents in the 4-position was developed. These valuable fluorinated building
blocks were obtained from the corresponding cyclohexanones in a facile and convenient
procedure, demonstrated to be superior to the traditional approaches. The application
of this methodology to cyclohexane-1,4-dione opened access to 2,5-bis(polyfluoroacyl)-1,4-hydroquinones.
Structural peculiarities of the obtained phenols as well as their 1,3-dicarbonyl or
1,3,5-tricarbonyl precursors are discussed on the basis of multinuclear NMR spectroscopy.
Key words
fluorinated compounds - arenes - ketones - aromatization - phenols
References <A NAME="RT18307SS-1">1 </A>
This work was presented in part at the 18th International Symposium on Fluorine Chemistry,
Bremen, Germany, 30 July-4 August 2006.
<A NAME="RT18307SS-2">2 </A>
Present address: Hansa Fine Chemicals GmbH, BITZ, Fahrenheit Str. 1, 28359 Bremen,
Germany.
<A NAME="RT18307SS-3A">3a </A>
Welch JT.
Tetrahedron
1987,
43:
3123
<A NAME="RT18307SS-3B">3b </A>
Lin P.
Jiang J.
Tetrahedron
2000,
56:
3635
<A NAME="RT18307SS-3C">3c </A>
Welch JT.
Eswarakrishnan S.
Fluorine in Bioorganic Chemistry
Wiley;
New York:
1991.
<A NAME="RT18307SS-3D">3d </A>
Organofluorine Chemistry - Principles and Commercial Applications
Banks RE.
Smart BE.
Tatlow JC.
Plenum;
New York:
1994.
<A NAME="RT18307SS-3E">3e </A>
Bégué J.-P.
Bonnet-Delpon D.
Chimie bioorganique et médicinale du fluor
CNRS Editions;
Paris:
2005.
<A NAME="RT18307SS-4A">4a </A>
Hiyama T.
Organofluorine Compounds. Chemistry and Application
Springer;
Berlin:
2000.
<A NAME="RT18307SS-4B">4b </A>
Kirsch P.
Modern Fluoroorganic Chemistry, Synthesis, Reactivity, Applications
Wiley-VCH;
Weinheim:
2004.
<A NAME="RT18307SS-4C">4c </A>
Chambers RD.
Fluorine in Organic Chemistry
Blackwell;
Oxford:
2004.
<A NAME="RT18307SS-5">5 </A>
Mandal SK.
Nag K.
J. Chem. Soc., Dalton Trans.
1983,
2429
<A NAME="RT18307SS-6">6 </A>
Schoth R.-M.
PhD Thesis
University of Bremen;
Germany:
1996.
<A NAME="RT18307SS-7">7 </A>
Ansong O.
Antoine MD.
Nwokogu GC.
Hergenrother PM.
J. Org. Chem.
1994,
59:
2506
<A NAME="RT18307SS-8A">8a </A>
Prelog V.
Metzler O.
Jeger O.
Helv. Chim. Acta
1947,
30:
675
<A NAME="RT18307SS-8B">8b </A>
Jones ECS.
Kenner J.
J. Chem. Soc.
1931,
1842
<A NAME="RT18307SS-8C">8c </A>
Bertz SH.
Synthesis
1980,
708
<A NAME="RT18307SS-8D">8d </A>
Nishiwaki N.
Tohda Y.
Ariga M.
Synthesis
1997,
1277
<A NAME="RT18307SS-9">9 </A>
Sevenard DV.
Kazakova O.
Chizhov DL.
Röschenthaler G.-V.
J. Fluorine Chem.
2006,
127:
983
<A NAME="RT18307SS-10A">10a </A>
Openshaw HT.
Robinson R.
J. Chem. Soc.
1946,
912
<A NAME="RT18307SS-10B">10b </A>
Coumbarides GS.
Dingjan M.
Eames J.
Weerasooriya N.
J. Chem. Res., Synop.
2000,
328
<A NAME="RT18307SS-11">11 </A>
Sevenard DV.
Kazakova O.
Chizhov DL.
Yachevskii DS.
Lork E.
Poveleit J.
Charushin VN.
Röschenthaler G.-V.
Helv. Chim. Acta
2007,
90:
369
<A NAME="RT18307SS-12A">12a </A>
Sevenard DV.
Khomutov OG.
Kodess MI.
Pashkevich KI.
Russ. Chem. Bull.
1999,
48:
400
<A NAME="RT18307SS-12B">12b </A>
Chizhov DL.
Pashkevich KI.
Röschenthaler G.-V.
J. Fluorine Chem.
2003,
123:
267
<A NAME="RT18307SS-13">13 </A>
For the synthesis of related bridged dibromoketones from fluorinated 1,3,5-triketones,
as well as for the stereochemis-try of 4 , see ref. 11.
<A NAME="RT18307SS-14">14 </A>
2,4-Dibromo-6-(trifluoroacetyl)phenol and 4-bromophenol 3j and its monohydrate could be identified (see experimental procedure), whereas the
targeted acid 3g was not detected at all.
<A NAME="RT18307SS-15">15 </A>
Archer S.
Perianayagam C.
J. Med. Chem.
1979,
22:
306
<A NAME="RT18307SS-16">16 </A>
Duan J.
Zhang LH.
Dolbier WR.
Synlett
1999,
1245
<A NAME="RT18307SS-17">17 </A>
Kirsch P.
Reiffenrath V.
Bremer M.
Synlett
1999,
389
<A NAME="RT18307SS-18">18 </A>
Linderman RJ.
Jamois EA.
J. Fluorine Chem.
1991,
53:
79
<A NAME="RT18307SS-19A">19a </A>
Herrman F.
Liebigs Ann. Chem.
1882,
211:
306
<A NAME="RT18307SS-19B">19b </A>
Guha PC.
Chem. Ber.
1939,
72:
1359
<A NAME="RT18307SS-19C">19c </A>
Bagrov FV.
Bagrov DF.
Russ. J. Org. Chem. (Engl. Transl.)
1994,
30:
637
<A NAME="RT18307SS-20">20 </A>
The Chemistry of Enols
Rappoport Z.
Wiley;
Chichester:
1990.
<A NAME="RT18307SS-21">21 </A> For the hydrogen bonding and equilibria in related non-fluorinated phenols, see:
Koelle U.
Forsén S.
Acta Chem. Scand., Ser. A
1974,
28:
531
<A NAME="RT18307SS-22">22 </A>
Sevenard DV.
Kazakova O.
Lork E.
Dülcks T.
Chizhov DL.
Röschenthaler G.-V.
J. Mol. Struct.
2007,
846:
87
<A NAME="RT18307SS-23A">23a </A>
Koltsov AI.
Kheifets GM.
Russ. Chem. Rev. (Engl. Transl.)
1971,
40:
773
<A NAME="RT18307SS-23B">23b </A>
Emsley J.
Struct. Bonding
1984,
57:
147
<A NAME="RT18307SS-23C">23c </A>
Koltsov AI.
J. Mol. Struct.
1998,
444:
1
<A NAME="RT18307SS-24">24 </A>
Sosnovskikh VY.
Russ. Chem. Bull.
2001,
1223
<A NAME="RT18307SS-25">25 </A>
Neyland OY.
Stradyn’ YaP.
Silin’sh EA.
Balode DR.
Valtere SP.
Kadysh VP.
Kalnin’ SV.
Kampar VE.
Mazheyka IB.
Taure LF.
Stroenie i Tautomernye Prevrashcheniya β-Dikarbonil’nykh Soedineniy (in Russian)
Zinatne;
Riga:
1977.
<A NAME="RT18307SS-26">26 </A>
Wustrow D.
Belliotti T.
Glase S.
Kesten SR.
Johnson D.
Colbry N.
Rubin R.
Blackburn A.
Akunne H.
Corbin A.
Davis MD.
Georgic L.
Whetzel S.
Zoski K.
Heffner T.
Pugsley T.
Wise L.
J. Med. Chem.
1998,
41:
760
<A NAME="RT18307SS-27">27 </A>
Kohn M.
Segel A.
Monatsh. Chem.
1925,
46:
661
<A NAME="RT18307SS-28">28 </A>
For freshly prepared CDCl3 (3d ,h ,i ,j and 5a ,c ,f ,k ), acetone-d
6 , or THF (5g ) solns. It is notable that if the CDCl3 soln of 5c is maintained at r.t. for 20 h, the [bis-enol]/[F ]/[G ] molar ratio changes from 53:24:23 to 89:6:5 (by NMR spectroscopy). Contact with
silica gel leads to hydration of phenols 3 . When a mixture of 3j is stirred with silica gel in CHCl3 , the concentration of the hydrate form increases from 11% to 70% after 14 h at r.t.
Dehydration can be achieved if the substance is maintained in anhyd CHCl3 : for 3j the hydrate content changed from 70% to 11% after 7 d at r.t. The use of 4-Å MS accelerates
dehydration. In this case, the content of the hydrate form decreases to 7% after 17
h at r.t. (by 19 F NMR). Anhyd MgSO4 appeared to be inefficient.
<A NAME="RT18307SS-29">29 </A>
Okada Y.
Yokozava M.
Akiba M.
Oishi K.
Okawa K.
Akeboshi T.
Kawamura Y.
Inokuma S.
Nakamura Y.
Nishimura J.
Org. Biomol. Chem.
2003,
1:
2506