Planta Med 2008; 74(13): 1602-1607
DOI: 10.1055/s-2008-1074577
Perspective
© Georg Thieme Verlag KG Stuttgart · New York

Rodent Models of Colon Carcinogenesis for the Study of Chemopreventive Activity of Natural Products

Angelo Pietro Femia1 , Giovanna Caderni1
  • 1Department of Pharmacology, University of Florence, Florence, Italy
Further Information

Publication History

Received: April 9, 2008 Revised: May 2, 2008

Accepted: May 9, 2008

Publication Date:
04 July 2008 (online)

Abstract

This perspective describes some commonly used animal models for the evaluation of potential chemopreventive agents in colon carcinogenesis. Special emphasis is given to the azoxymethane (AOM)/1,2-dimethylhydrazine (DMH) rat model and ApcMin mice, carrying a mutation in Apc, a key gene in human carcinogenesis. In the AOM/DMH model, colon cancers are induced chemically by high dosages of carcinogen and tumours develop mainly in the colon through a multistep process similar to that observed in human carcinogenesis. In the ApcMin mice, carcinogenesis is spontaneous with no need of carcinogen administration but tumours develop mostly in the small intestine while colon tumours are less frequent. Moreover, the easy identification of preneoplastic lesions, such as aberrant crypt foci (ACF) and mucin depleted foci (MDF), in short-term studies make the AOM/DMH model a useful test for screening the potential chemopreventive efficacy of natural products.

References

  • 1 Ferlay J, Autier P, Boniol M, Heanue M, Colombet M, Boyle P. Estimates of the cancer incidence and mortality in Europe in 2006.  Ann Oncol. 2007;  18 581-92
  • 2 Hawk E T, Umar A, Viner J L. Colorectal cancer chemoprevention – an overview of the science.  Gastroenterology. 2004;  126 1423-47
  • 3 Fearnhead N S, Wilding J L, Bodmer W. Genetics of colorectal cancer: hereditary aspects and overview of colorectal tumorigenesis.  Br Med Bull. 2002;  64 27-43
  • 4 Fearnhead N S, Britton M P, Bodmer W F. The ABC of APC.  Hum Mol Genet. 2001;  10 721-33
  • 5 Fodde R, Smits R, Clevers H. APC, signal transduction and genetic instability in colorectal cancer.  Nat Rev Cancer. 2001;  1 55-67
  • 6 Lynch H T, de la Chapelle A. Hereditary colorectal cancer.  N Engl J Med. 2003;  348 919-32
  • 7 de la Chapelle A. Genetic predisposition to colorectal cancer.  Nat Rev Cancer. 2004;  4 769-80
  • 8 Fearon E R, Vogelstein B. A genetic model for colorectal tumorigenesis.  Cell. 1990;  61 759-67
  • 9 Jass J R. Pathogenesis of colorectal cancer.  Surg Clin North Am. 2002;  82 891-904
  • 10 Lüchtenborg M, Weijenberg M P, Roemen G M, de Bruïne A P, van den Brandt P A, Lentjes M H. et al . APC mutations in sporadic colorectal carcinomas from The Netherlands Cohort Study.  Carcinogenesis. 2004;  25 1219-26
  • 11 Conlin A, Smith G, Carey F A, Wolf C R, Steele R J. The prognostic significance of K-ras, p53, and APC mutations in colorectal carcinoma.  Gut. 2005;  54 1283-6
  • 12 Lüchtenborg M, Weijenberg M P, Wark P A, Saritas A M, Roemen G M, van Muijen G N. et al . Mutations in APC, CTNNB1 and K-ras genes and expression of hMLH1 in sporadic colorectal carcinomas from the Netherlands Cohort Study.  BMC Cancer. 2005;  5 160
  • 13 Fenton J I, Hord N G. Stage matters: choosing relevant model systems to address hypotheses in diet and cancer chemoprevention research.  Carcinogenesis. 2006;  27 893-902
  • 14 Moser A R, Pitot H C, Dove W F. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse.  Science. 1990;  247 322-4
  • 15 Gaspar C, Fodde R. APC dosage effects in tumorigenesis and stem cell differentiation.  Int J Dev Biol. 2004;  48 377-86
  • 16 Taketo M M. Mouse models of gastrointestinal tumors.  Cancer Sci. 2006;  97 355-61
  • 17 Hinoi T, Akyol A, Theisen B K, Ferguson D O, Greenson J K, Williams B O. et al . Mouse model of colonic adenoma-carcinoma progression based on somatic Apc inactivation.  Cancer Res. 2007;  67 9721-30
  • 18 Boivin G P, Washington K, Yang K, Ward J M, Pretlow T P, Russell R. et al . Pathology of mouse models of intestinal cancer: consensus report and recommendations.  Gastroenterology. 2003;  124 762-77
  • 19 Corpet D E, Pierre F. Point: From animal models to prevention of colon cancer. Systematic review of chemoprevention in min mice and choice of the model system.  Cancer Epidemiol Biomarkers Prev. 2003;  12 391-400
  • 20 Corpet D E, Pierre F. How good are rodent models of carcinogenesis in predicting efficacy in humans? A systematic review and meta-analysis of colon chemoprevention in rats, mice and men.  Eur J Cancer. 2005;  41 1911-22
  • 21 Oshima M, Oshima H, Kitagawa K, Kobayashi M, Itakura C, Taketo M. Loss of Apc heterozygosity and abnormal tissue building in nascent intestinal polyps in mice carrying a truncated Apc gene.  Proc Natl Acad Sci U S A. 1995;  92 4482-6
  • 22 Issa A Y, Volate S R, Muga S J, Nitcheva D, Smith T, Wargovich M J. Green tea selectively targets initial stages of intestinal carcinogenesis in the AOM- ApcMin mouse model.  Carcinogenesis. 2007;  28 1978-84
  • 23 Paulsen J E, Steffensen I L, Loberg E M, Husoy T, Namork E, Alexander J. Qualitative and quantitative relationship between dysplastic aberrant crypt foci and tumorigenesis in the Min/+ mouse colon.  Cancer Res. 2001;  61 5010-5
  • 24 Andreassen A, Mollersen L, Vikse R, Steffensen I L, Mikalsen A, Paulsen J E. et al . One dose of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhiP) or 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) induces tumours in Min/+ mice by truncation mutations or LOH in the Apc gene.  Mutat Res. 2002;  517 157-66
  • 25 Aoki K, Tamai Y, Horiike S, Oshima M, Taketo M M. Colonic polyposis caused by mTOR-mediated chromosomal instability in Apc+/Delta716 Cdx2+/- compound mutant mice.  Nat Genet. 2003;  35 323-30
  • 26 Amos-Landgraf J M, Kwong L N, Kendziorski C M, Reichelderfer M, Torrealba J, Weichert J. et al . Target-selected Apc-mutant rat kindred enhances the modeling of familial human colon cancer.  Proc Natl Acad Sci U S A. 2007;  104 4036-4
  • 27 Anisimov V N, Ukraintseva S V, Yashin A I. Cancer in rodents: does it tell us about cancer in humans?.  Nat Rev Cancer. 2005;  5 807-19
  • 28 Takahashi M, Mutoh M, Kawamori T, Sugimura T, Wakabayashi K. Altered expression of beta-catenin, inducible nitric oxide synthase and cyclooxygenase-2 in azoxymethane-induced rat colon carcinogenesis.  Carcinogenesis. 2000;  21 1319-27
  • 29 Femia A P, Bendinelli B, Giannini A, Salvadori M, Pinzani P, Dolara P. et al . Mucin-depleted foci have ß-catenin gene mutations, altered expression of its protein, and are dose- and time-dependent in the colon of 1,2-dimethylhydrazine-treated rats.  Int J Cancer. 2005;  116 9-15
  • 30 Yamada Y, Yoshimi N, Hirose Y, Kawabata K, Matsunaga K, Shimizu M. et al . Frequent beta-catenin gene mutations and accumulations of the protein in the putative preneoplastic lesions lacking macroscopic aberrant crypt foci appearance, in rat colon carcinogenesis.  Cancer Res. 2000;  60 3323-7
  • 31 Femia A P, Tarquini E, Salvadori M, Ferri S, Giannini A, Dolara P. et al . K-ras mutations and mucin profile in preneoplastic lesions and colon tumors induced in rats by 1,2-dimethylhydrazine.  Int J Cancer. 2008;  122 117-23
  • 32 Corpet D E, Tache S. Most effective colon cancer chemopreventive agents in rats: a systematic review of aberrant crypt foci and tumor data, ranked by potency.  Nutr Cancer. 2002;  43 1-21
  • 33 LaMont J T, O′Gorman T A. Experimental colon cancer.  Gastroenterology. 1978;  75 1157-69
  • 34 Chang W W. Histogenesis of colon cancer in experimental animals.  Scand J Gastroenterol. 1984;  104 27-43
  • 35 Glauert H P, Weeks J A. Dose- and time-response of colon carcinogenesis in Fischer-344 rats after a single dose of 1,2-dimethylhydrazine.  Toxicol Lett. 1989;  48 283-7
  • 36 Reddy B S, Maeura Y. Tumor promotion by dietary fat in azoxymethane-induced colon carcinogenesis in female F344 rats: influence of amount and source of dietary fat.  J Natl Cancer Inst. 1984;  72 745-50
  • 37 Femia A P, Caderni G, Ianni M, Salvadori M, Schijlen E, Collins G. et al . Effect of diets fortified with tomatoes or onions with variable quercetin-glycoside content on azoxymethane-induced aberrant crypt foci in the colon of rats.  Eur J Nutr. 2003;  42 346-52
  • 38 Surh Y J. Cancer chemoprevention with dietary phytochemicals.  Nat Rev Cancer. 2003;  3 768-80
  • 39 Sohn O S, Fiala E S, Requeijo S P, Weisburger J H, Gonzalez F J. Differential effects of CYP2E1 status on the metabolic activation of the colon carcinogens azoxymethane and methylazoxymethanol.  Cancer Res. 2001;  61 8435-40
  • 40 Day D W, Jass J R, Price A B, Shepherd N A, Sloan J M, Talbot I C. et al .Morson and Dawson’s gastrointestinal pathology, 4th edition. Oxford; Blackwell Publishing 2003
  • 41 Sugimura T. Nutrition and dietary carcinogens.  Carcinogenesis. 2000;  21 387-95
  • 42 Nakagama H, Nakanishi M, Ochiai M. Modeling human colon cancer in rodents using a food-borne carcinogen, PhIP.  Cancer Sci. 2005;  96 627-36
  • 43 Maurin N, Forgue-Lafitte M E, Levy P, Zimber A, Bara J. Progression of tumors arising from large ACF is associated with the MUC5AC expression during rat colon MNNG carcinogenis.  Int J Cancer. 2007;  120 477-83
  • 44 Clapper M L, Cooper H S, Chang W C. Dextran sulfate sodium-induced colitis-associated neoplasia: a promising model for the development of chemopreventive interventions.  Acta Pharmacol Sin. 2007;  28 1450-9
  • 45 Kern S E, Redston M, Seymour A B, Caldas C, Powell S M, Kornacki S. et al . Molecular genetic profiles of colitis-associated neoplasms.  Gastroenterology. 1994;  107 420-8
  • 46 Tanaka T, Kohno H, Suzuki R, Yamada Y, Sugie S, Mori H. A novel inflammation-related mouse colon carcinogenesis model induced by azoxymethane and dextran sodium sulfate.  Cancer Sci. 2003;  94 965-73
  • 47 Neufert C, Becker C, Neurath M F. An inducible mouse model of colon carcinogenesis for the analysis of sporadic and inflammation-driven tumor progression.  Nat Prot. 2007;  2 1998-2004
  • 48 Kohno H, Suzuki R, Curini M, Epifano F, Maltese F, Gonzales S P. et al . Dietary administration with prenyloxycoumarins, auraptene and collinin, inhibits colitis-related colon carcinogenesis in mice.  Int J Cancer. 2006;  118 2936-42
  • 49 Bird R P. Observation and quantification of aberrant crypts in the murine colon treated with a colon carcinogen: preliminary findings.  Cancer Lett. 1987;  37 147-51
  • 50 Pretlow T P, Pretlow T G. Mutant KRAS in aberrant crypt foci (ACF): initiation of colorectal cancer?.  Biochim Biophys Acta. 2005;  1756 83-96
  • 51 Di Gregorio C, Losi L, Fante R, Modica S, Ghidoni M, Pedroni M. et al . Histology of aberrant crypt foci in the human colon.  Histopathology. 1997;  30 328-34
  • 52 Zheng Y, Kramer P M, Lubet R A, Steele V E, Kelloff G J, Pereira M A. Effect of retinoids on AOM-induced colon cancer in rats: modulation of cell proliferation, apoptosis and aberrant crypt foci.  Carcinogenesis. 1999;  20 255-60
  • 53 Shih C K, Chiang W, Kuo M L. Effects of adlay on azoxymethane-induced colon carcinogenesis in rats.  Food Chem Toxicol. 2004;  42 1339-47
  • 54 Papanikolaou A, Wang Q S, Papanikolaou D, Whiteley H E, Rosenberg D W. Sequential and morphological analyses of aberrant crypt foci formation in mice of differing susceptibility to azoxymethane-induced colon carcinogenesis.  Carcinogenesis. 2000;  21 1567-72
  • 55 Hayashi K, Suzuki R, Miyamoto S, Shin-Ichiroh Y, Kohno H, Sugie S. et al . Citrus auraptene suppresses azoxymethane-induced colonic preneoplastic lesions in C57BL/KsJ-db/db mice.  Nutr Cancer. 2007;  58 75-84
  • 56 Asano N, Kuno T, Hirose Y, Yamada Y, Yoshida K, Tomita H. et al . Preventive effects of a flavonoid myricitrin on the formation of azoxymethane-induced premalignant lesions in colons of rats.  Asian Pac J Cancer Prev. 2007;  8 73-6
  • 57 Ochiai M, Watanabe M, Nakanishi M, Taguchi A, Sugimura T, Nakagama H. Differential staining of dysplastic aberrant crypt foci in the colon facilitates prediction of carcinogenic potentials of chemicals in rats.  Cancer Lett. 2005;  220 67-74
  • 58 Caderni G, Femia A P, Giannini A, Favuzza A, Luceri C, Salvadori M. et al . Identification of mucin-depleted foci in the unsectioned colon of azoxymethane-treated rats: correlation with carcinogenesis.  Cancer Res. 2003;  63 2388-92
  • 59 Femia A P, Dolara P, Caderni G. Mucin-depleted foci (MDF) in the colon of rats treated with azoxymethane (AOM) are useful biomarkers for colon carcinogenesis.  Carcinogenesis. 2004;  25 277-81
  • 60 Femia A P, Dolara P, Giannini A, Salvadori M, Biggeri A, Caderni G. Frequent mutation of Apc gene in rat colon tumors and mucin-depleted foci, preneoplastic lesions in experimental colon carcinogenesis.  Cancer Res. 2007;  67 445-9
  • 61 Femia A P, Caderni G, Bottini C, Salvadori M, Dolara P, Tessitore L. Mucin-depleted foci are modulated by dietary treatments and show deregulation of proliferative activity in carcinogen-treated rodents.  Int J Cancer. 2007;  120 2301-5
  • 62 Plate A Y, Gallaher D D. Effects of indole-3-carbinol and phenethyl isothiocyanate on colon carcinogenesis induced by azoxymethane in rats.  Carcinogenesis. 2006;  27 287-92
  • 63 Pierre F, Santarelli R, Taché S, Guéraud F, Corpet D E. Beef meat promotion of dimethylhydrazine-induced colorectal carcinogenesis biomarkers is suppressed by dietary calcium.  Br J Nutr. 2008;  99 1000-6
  • 64 Arikawa A Y, Gallaher D D. Cruciferous vegetables reduce morphological markers of colon cancer risk in dimethylhydrazine-treated rats.  J Nutr. 2008;  138 526-32

Giovanna Caderni

Department of Pharmacology

University of Florence

Viale G. Pieraccini 6

50139 Florence

Italy

Email: giovanna.caderni@unifi.it

    >