Planta Med 2008; 74(13): 1593-1601
DOI: 10.1055/s-2008-1081347
Review
© Georg Thieme Verlag KG Stuttgart · New York

Targeting Epigenetic Mechanisms: Potential of Natural Products in Cancer Chemoprevention

Alexander-Thomas Hauser1 , Manfred Jung1
  • 1Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
Further Information

Publication History

Received: April 11, 2008 Revised: June 6, 2008

Accepted: June 20, 2008

Publication Date:
14 August 2008 (online)

Abstract

The term epigenetics is defined as heritable changes in gene expression patterns that occur without changes in DNA sequence. Epigenetic changes according to this definition are achieved by methylation of cytosine bases in the DNA and by histone modifications, such as acetylation, methylation or phosphorylation. These modifications play an important role in regulating gene expression and the existence of an epigenetic code which maintains these modifications even upon cell division has been underlined by many investigations. Targeting the enzymes which catalyze DNA methylation or histone modifications may be a possibility not only for cancer therapy but also for chemoprevention since disruption of epigenetic balance is known to cause diseases such as cancer. In this review, we want to present the key epigenetic targets. We highlight natural products that modulate these epigenetic mechanisms and show their potential for cancer chemoprevention.

References

  • 1 Crick F. Central dogma of molecular biology.  Nature. 1970;  227 561-3
  • 2 Smith L T, Otterson G A, Plass C. Unraveling the epigenetic code of cancer for therapy.  Trends Genet. 2007;  23 449-56
  • 3 Wolffe A P, Matzke M A. Epigenetics: regulation through repression.  Science. 1999;  286 481-6
  • 4 McCabe D C, Caudill M A. DNA methylation, genomic silencing, and links to nutrition and cancer.  Nutr Rev. 2005;  63 183-95
  • 5 Bird A. DNA methylation patterns and epigenetic memory.  Genes Dev. 2002;  16 6-21
  • 6 Ehrlich M, Gama-Sosa M A, Huang L H, Midgett R M, Kuo K C, McCune R A. et al . Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells.  Nucleic Acids Res. 1982;  10 2709-21
  • 7 Takai D, Jones P A. Comprehensive analysis of CpG islands in human chromosomes 21 and 22.  Proc Natl Acad Sci U S A. 2002;  99 3740-5
  • 8 Gardiner-Garden M, Frommer M. CpG islands in vertebrate genomes.  J Mol Biol. 1987;  196 261-82
  • 9 Dunn B K. Hypomethylation: one side of a larger picture.  Ann N Y Acad Sci. 2003;  983 28-42
  • 10 Baylin S B, Herman J G. DNA hypermethylation in tumorigenesis: epigenetics joins genetics.  Trends Genet. 2000;  16 168-74
  • 11 Costello J F, Plass C. Methylation matters.  J Med Genet. 2001;  38 285-303
  • 12 Esteller M. CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future.  Oncogene. 2002;  21 5427-40
  • 13 Brannan C I, Bartolomei M S. Mechanisms of genomic imprinting.  Curr Opin Genet Dev. 1999;  9 164-70
  • 14 Hansen R S. X inactivation-specific methylation of LINE-1 elements by DNMT3B: implications for the Lyon repeat hypothesis.  Hum Mol Genet. 2003;  12 2559-67
  • 15 Li E, Bestor T H, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality.  Cell. 1992;  69 915-26
  • 16 Ateeq B, Unterberger A, Szyf M, Rabbani S A. Pharmacological inhibition of DNA methylation induces proinvasive and prometastatic genes in vitro and in vivo. .  Neoplasia. 2008;  10 266-78
  • 17 Bestor T, Laudano A, Mattaliano R, Ingram V. Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases.  J Mol Biol. 1988;  203 971-83
  • 18 Yoder J A, Bestor T H. A candidate mammalian DNA methyltransferase related to pmt1 p of fission yeast.  Hum Mol Genet. 1998;  7 279-84
  • 19 Okano M, Xie S, Li E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases.  Nat Genet. 1998;  19 219-20
  • 20 Wu J, Grunstein M. 25 years after the nucleosome model: chromatin modifications.  Trends Biochem Sci. 2000;  25 619-23
  • 21 Luger K, Mader A W, Richmond R K, Sargent D F, Richmond T J. Crystal structure of the nucleosome core particle at 2.8 A resolution.  Nature. 1997;  389 251-60
  • 22 Tremethick D J. Higher-order structures of chromatin: the elusive 30 nm fiber.  Cell. 2007;  128 651-4
  • 23 Jenuwein T, Allis C D. Translating the histone code.  Science. 2001;  293 1074-80
  • 24 Berger S L. The complex language of chromatin regulation during transcription.  Nature. 2007;  447 407-12
  • 25 Kouzarides T. Chromatin modifications and their function.  Cell. 2007;  128 693-705
  • 26 Rodenhiser D, Mann M. Epigenetics and human disease: translating basic biology into clinical applications.  Cmaj. 2006;  174 341-8
  • 27 Li B, Carey M, Workman J L. The role of chromatin during transcription.  Cell. 2007;  128 707-19
  • 28 Nan X, Ng H H, Johnson C A, Laherty C D, Turner B M, Eisenman R N. et al . Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex.  Nature. 1998;  393 386-9
  • 29 Jones P L, Veenstra G J, Wade P A, Vermaak D, Kass S U, Landsberger N. et al . et alMethylated DNA and MeCP2 recruit histone deacetylase to repress transcription.  Nat Genet. 1998;  19 187-91
  • 30 Zhu W G, Otterson G A. The interaction of histone deacetylase inhibitors and DNA methyltransferase inhibitors in the treatment of human cancer cells.  Curr Med Chem Anticancer Agents. 2003;  3 187-99
  • 31 Cameron E E, Bachman K E, Myohanen S, Herman J G, Baylin S B. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer.  Nat Genet. 1999;  21 103-7
  • 32 Kikuchi T, Itoh F, Toyota M, Suzuki H, Yamamoto H, Fujita M. et al . Aberrant methylation and histone deacetylation of cyclooxygenase 2 in gastric cancer.  Int J Cancer. 2002;  97 272-7
  • 33 Jones P A, Baylin S B. The fundamental role of epigenetic events in cancer.  Nat Rev Genet. 2002;  3 415-28
  • 34 Cheung P, Lau P. Epigenetic regulation by histone methylation and histone variants.  Mol Endocrinol. 2005;  19 563-73
  • 35 Rossig L, Li H, Fisslthaler B, Urbich C, Fleming I, Forstermann U. et al . Inhibitors of histone deacetylation downregulate the expression of endothelial nitric oxide synthase and compromise endothelial cell function in vasorelaxation and angiogenesis.  Circ Res. 2002;  91 837-44
  • 36 Kouzarides T. Histone methylation in transcriptional control.  Curr Opin Genet Dev. 2002;  12 198-209
  • 37 Lachner M, Sengupta R, Schotta G, Jenuwein T. Trilogies of histone lysine methylation as epigenetic landmarks of the eukaryotic genome.  Cold Spring Harb Symp Quant Biol. 2004;  69 209-18
  • 38 Fraga M F, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G. et al . Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer.  Nat Genet. 2005;  37 391-400
  • 39 Metzger E, Yin N, Wissmann M, Kunowska N, Fischer K, Friedrichs N. et al . Phosphorylation of histone H3 at threonine 11 establishes a novel chromatin mark for transcriptional regulation.  Nat Cell Biol. 2008;  10 53-60
  • 40 Christman J K. 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy.  Oncogene. 2002;  21 5483-95
  • 41 Jones P A, Taylor S M. Cellular differentiation, cytidine analogs and DNA methylation.  Cell. 1980;  20 85-93
  • 42 Laird P W, Jackson-Grusby L, Fazeli A, Dickinson S L, Jung W E, Li E. et al . Suppression of intestinal neoplasia by DNA hypomethylation.  Cell. 1995;  81 197-205
  • 43 Davis C D, Uthus E O. Dietary selenite and azadeoxycytidine treatments affect dimethylhydrazine-induced aberrant crypt formation in rat colon and DNA methylation in HT-29 cells.  J Nutr. 2002;  132 292-7
  • 44 Lantry L E, Zhang Z, Crist K A, Wang Y, Kelloff G J, Lubet R A. et al . 5-Aza-2′-deoxycytidine is chemopreventive in a 4-(methyl-nitrosamino)-1-(3-pyridyl)-1-butanone-induced primary mouse lung tumor model.  Carcinogenesis. 1999;  20 343-6
  • 45 McGregor F, Muntoni A, Fleming J, Brown J, Felix D H, MacDonald D G. et al . Molecular changes associated with oral dysplasia progression and acquisition of immortality: potential for its reversal by 5-azacytidine.  Cancer Res. 2002;  62 4757-66
  • 46 Pina I C, Gautschi J T, Wang G Y, Sanders M L, Schmitz F J, France D. et al . Psammaplins from the sponge Pseudoceratina purpurea: inhibition of both histone deacetylase and DNA methyltransferase.  J Org Chem. 2003;  68 3866-73
  • 47 Fang M Z, Wang Y, Ai N, Hou Z, Sun Y, Lu H. et al . Tea polyphenol (–)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines.  Cancer Res. 2003;  63 7563-70
  • 48 Narayanan B A. Chemopreventive agents alters global gene expression pattern: predicting their mode of action and targets.  Curr Cancer Drug Targets. 2006;  6 711-27
  • 49 Lee W J, Zhu B T. Inhibition of DNA methylation by caffeic acid and chlorogenic acid, two common catechol-containing coffee polyphenols.  Carcinogenesis. 2006;  27 269-77
  • 50 Fini L, Selgrad M, Fogliano V, Graziani G, Romano M, Hotchkiss E. et al . Annurca apple polyphenols have potent demethylating activity and can reactivate silenced tumor suppressor genes in colorectal cancer cells.  J Nutr. 2007;  137 2622-8
  • 51 Dixon R A, Ferreira D. Genistein.  Phytochemistry. 2002;  60 205-11
  • 52 Dean N M, Kanemitsu M, Boynton A L. Effects of the tyrosine-kinase inhibitor genistein on DNA synthesis and phospholipid-derived second messenger generation in mouse 10T1/2 fibroblasts and rat liver T51B cells.  Biochem Biophys Res Commun. 1989;  165 795-801
  • 53 Wietrzyk J, Boratynski J, Grynkiewicz G, Ryczynski A, Radzikowski C, Opolski A. Antiangiogenic and antitumour effects in vivo of genistein applied alone or combined with cyclophosphamide.  Anticancer Res. 2001;  21 3893-6
  • 54 Shao Z M, Wu J, Shen Z Z, Barsky S H. Genistein exerts multiple suppressive effects on human breast carcinoma cells.  Cancer Res. 1998;  58 4851-7
  • 55 Fang M Z, Chen D, Sun Y, Jin Z, Christman J K, Yang C S. Reversal of hypermethylation and reactivation of p16INK4a, RARbeta, and MGMT genes by genistein and other isoflavones from soy.  Clin Cancer Res. 2005;  11 7033-41
  • 56 Allfrey V G, Faulkner R, Mirsky A E. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis.  Proc Natl Acad Sci U S A. 1964;  51 786-94
  • 57 Roth S Y, Denu J M, Allis C D. Histone acetyltransferases.  Annu Rev Biochem. 2001;  70 81-120
  • 58 Yang X J, Seto E. The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men.  Nat Rev Mol Cell Biol. 2008;  9 206-18
  • 59 Taunton J, Hassig C A, Schreiber S L. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p.  Science. 1996;  272 408-11
  • 60 Gao L, Cueto M A, Asselbergs F, Atadja P. Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family.  J Biol Chem. 2002;  277 25 748-55
  • 61 Gregoretti I V, Lee Y M, Goodson H V. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis.  J Mol Biol. 2004;  338 17-31
  • 62 Gray S G, Ekstrom T J. The human histone deacetylase family.  Exp Cell Res. 2001;  262 75-83
  • 63 Haggarty S J, Koeller K M, Wong J C, Grozinger C M, Schreiber S L. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation.  Proc Natl Acad Sci U S A. 2003;  100 4389-94
  • 64 Smith J S, Avalos J, Celic I, Muhammad S, Wolberger C, Boeke J D. SIR2 family of NAD(+)-dependent protein deacetylases.  Methods Enzymol. 2002;  353 282-300
  • 65 Dryden S C, Nahhas F A, Nowak J E, Goustin A S, Tainsky M A. Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle.  Mol Cell Biol. 2003;  23 3173-85
  • 66 Bereshchenko O R, Gu W, Dalla-Favera R. Acetylation inactivates the transcriptional repressor BCL6.  Nat Genet. 2002;  32 606-13
  • 67 Smith J. Human Sir2 and the ’silencing’ of p53 activity.  Trends Cell Biol. 2002;  12 404-6
  • 68 Jung M, Hoffmann K, Brosch G, Loidl P. Analogues of trichostatin A and trapoxin B as histone deacetylase inhibitors.  Bioorg Med Chem Lett. 1997;  7 1655-8
  • 69 Finnin M S, Donigian J R, Cohen A, Richon V M, Rifkind R A, Marks P A. et al . Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors.  Nature. 1999;  401 188-93
  • 70 Marks P A, Richon V M, Rifkind R A. Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells.  J Natl Cancer Inst. 2000;  92 1210-6
  • 71 Johnstone R W. Histone-deacetylase inhibitors: novel drugs for the treatment of cancer.  Nat Rev Drug Discov. 2002;  1 287-99
  • 72 Yoshida M, Kijima M, Akita M, Beppu T. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A.  J Biol Chem. 1990;  265 17 174-9
  • 73 Mork C N, Faller D V, Spanjaard R A. A mechanistic approach to anticancer therapy: targeting the cell cycle with histone deacetylase inhibitors.  Curr Pharm Des. 2005;  11 1091-104
  • 74 McLaughlin F, La Thangue N B. Histone deacetylase inhibitors open new doors in cancer therapy.  Biochem Pharmacol. 2004;  68 1139-44
  • 75 Emionite L, Galmozzi F, Grattarola M, Boccardo F, Vergani L, Toma S. Histone deacetylase inhibitors enhance retinoid response in human breast cancer cell lines.  Anticancer Res. 2004;  24 4019-24
  • 76 Taddei A, Roche D, Bickmore W A, Almouzni G. The effects of histone deacetylase inhibitors on heterochromatin: implications for anticancer therapy?.  EMBO Rep. 2005;  6 520-4
  • 77 Ungerstedt J S, Sowa Y, Xu W S, Shao Y, Dokmanovic M, Perez G. et al . Role of thioredoxin in the response of normal and transformed cells to histone deacetylase inhibitors.  Proc Natl Acad Sci USA. 2005;  102 673-8
  • 78 Nebbioso A, Clarke N, Voltz E, Germain E, Ambrosino C, Bontempo P. et al . Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells.  Nat Med. 2005;  11 77-84
  • 79 Glick R D, Swendeman S L, Coffey D C, Rifkind R A, Marks P A, Richon V M. et al . Hybrid polar histone deacetylase inhibitor induces apoptosis and CD95/CD95 ligand expression in human neuroblastoma.  Cancer Res. 1999;  59 4392-9
  • 80 Kwon S H, Ahn S H, Kim Y K, Bae G U, Yoon J W, Hong S. et al . Apicidin, a histone deacetylase inhibitor, induces apoptosis and Fas/Fas ligand expression in human acute promyelocytic leukemia cells.  J Biol Chem. 2002;  277 2073-80
  • 81 Cohen L A, Amin S, Marks P A, Rifkind R A, Desai D, Richon V M. Chemoprevention of carcinogen-induced mammary tumorigenesis by the hybrid polar cytodifferentiation agent, suberanilohydroxamic acid (SAHA).  Anticancer Res. 1999;  19 4999-5005
  • 82 Cohen L A, Marks P A, Rifkind R A, Amin S, Desai D, Pittman B. et al . Suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, suppresses the growth of carcinogen-induced mammary tumors.  Anticancer Res. 2002;  22 1497-504
  • 83 Desai D, Das A, Cohen L, el-Bayoumy K, Amin S. Chemopreventive efficacy of suberoylanilide hydroxamic acid (SAHA) against 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumorigenesis in female A/J mice.  Anticancer Res. 2003;  23 499-503
  • 84 Mann B S, Johnson J R, Cohen M H, Justice R, Pazdur R. FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma.  Oncologist. 2007;  12 1247-52
  • 85 Kim M S, Kwon H J, Lee Y M, Baek J H, Jang J E, Lee S W. et al . Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes.  Nat Med. 2001;  7 437-43
  • 86 Kim D H, Kim M, Kwon H J. Histone deacetylase in carcinogenesis and its inhibitors as anti-cancer agents.  J Biochem Mol Biol. 2003;  36 110-9
  • 87 Budillon A, Di Gennaro E, Bruzzese F, Rocco M, Manzo G, Caraglia M. Histone deacetylase inhibitors: a new wave of molecular targeted anticancer agents.  Recent Patents Anticancer Drug Discov. 2007;  2 119-34
  • 88 Glaser K B. HDAC inhibitors: Clinical update and mechanism-based potential.  Biochem Pharmacol. 2007;  74 659-71
  • 89 Scheppach W, Bartram H P, Richter F. Role of short-chain fatty acids in the prevention of colorectal cancer.  Eur J Cancer. 1995;  31A 1077-80
  • 90 Scheppach W, Weiler F. The butyrate story: old wine in new bottles?.  Curr Opin Clin Nutr Metab Care. 2004;  7 563-7
  • 91 Hinnebusch B F, Meng S, Wu J T, Archer S Y, Hodin R A. The effects of short-chain fatty acids on human colon cancer cell phenotype are associated with histone hyperacetylation.  J Nutr. 2002;  132 1012-7
  • 92 Nakata S, Yoshida T, Horinaka M, Shiraishi T, Wakada M, Sakai T. Histone deacetylase inhibitors upregulate death receptor 5/TRAIL-R2 and sensitize apoptosis induced by TRAIL/APO2-L in human malignant tumor cells.  Oncogene. 2004;  23 6261-71
  • 93 Emenaker N J, Calaf G M, Cox D, Basson M D, Qureshi N. Short-chain fatty acids inhibit invasive human colon cancer by modulating uPA, TIMP-1, TIMP-2, mutant p53, Bcl-2, Bax, p21 and PCNA protein expression in an in vitro cell culture model.  J Nutr. 2001;  131 3041s-6s
  • 94 Li X, Mikkelsen I M, Mortensen B, Winberg J O, Huseby N E. Butyrate reduces liver metastasis of rat colon carcinoma cells in vivo and resistance to oxidative stress in vitro. .  Clin Exp Metastasis. 2004;  21 331-8
  • 95 Myzak M C, Dashwood R H. Histone deacetylases as targets for dietary cancer preventive agents: lessons learned with butyrate, diallyl disulfide, and sulforaphane.  Curr Drug Targets. 2006;  7 443-52
  • 96 Pouillart P R. Role of butyric acid and its derivatives in the treatment of colorectal cancer and hemoglobinopathies.  Life Sci. 1998;  63 1739-60
  • 97 Herman-Antosiewicz A, Singh S V. Signal transduction pathways leading to cell cycle arrest and apoptosis induction in cancer cells by Allium vegetable-derived organosulfur compounds: a review.  Mutat Res. 2004;  555 121-31
  • 98 Hong Y S, Ham Y A, Choi J H, Kim J. Effects of allyl sulfur compounds and garlic extract on the expression of Bcl-2, Bax, and p53 in non small cell lung cancer cell lines.  Exp Mol Med. 2000;  32 127-34
  • 99 Nakagawa H, Tsuta K, Kiuchi K, Senzaki H, Tanaka K, Hioki K. et al . Growth inhibitory effects of diallyl disulfide on human breast cancer cell lines.  Carcinogenesis. 2001;  22 891-7
  • 100 Lea M A, Rasheed M, Randolph V M, Khan F, Shareef A, desBordes C. Induction of histone acetylation and inhibition of growth of mouse erythroleukemia cells by S-allylmercaptocysteine.  Nutr Cancer. 2002;  43 90-102
  • 101 Shirin H, Pinto J T, Kawabata Y, Soh J W, Delohery T, Moss S F. et al . Antiproliferative effects of S-allylmercaptocysteine on colon cancer cells when tested alone or in combination with sulindac sulfide.  Cancer Res. 2001;  61 725-31
  • 102 Myzak M C, Hardin K, Wang R, Dashwood R H, Ho E. Sulforaphane inhibits histone deacetylase activity in BPH-1, LnCaP and PC-3 prostate epithelial cells.  Carcinogenesis. 2006;  27 811-9
  • 103 Qiu L, Burgess A, Fairlie D P, Leonard H, Parsons P G, Gabrielli B G. Histone deacetylase inhibitors trigger a G2 checkpoint in normal cells that is defective in tumor cells.  Mol Biol Cell. 2000;  11 2069-83
  • 104 Myzak M C, Karplus P A, Chung F L, Dashwood R H. A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylase.  Cancer Res. 2004;  64 5767-74
  • 105 Perrino E, Cappelletti G, Tazzari V, Giavini E, Del Soldato P, Sparatore A. New sulfurated derivatives of valproic acid with enhanced histone deacetylase inhibitory activity.  Bioorg Med Chem Lett. 2008;  18 1893-7
  • 106 Lam S, MacAulay C, Le Riche J C, Dyachkova Y, Coldman A, Guillaud M. et al . A randomized phase IIb trial of anethole dithiolethione in smokers with bronchial dysplasia.  J Natl Cancer Inst. 2002;  94 1001-9
  • 107 Gey C, Kyrylenko S, Hennig L, Nguyen L H, Buttner A, Pham H D. et al . Phloroglucinol derivatives guttiferone G, aristoforin, and hyperforin: inhibitors of human sirtuins SIRT1 and SIRT2.  Angew Chem Int Ed Engl. 2007;  46 5219-22
  • 108 Shankar S, Singh G, Srivastava R K. Chemoprevention by resveratrol: molecular mechanisms and therapeutic potential.  Front Biosci. 2007;  12 4839-54
  • 109 Howitz K T, Bitterman K J, Cohen H Y, Lamming D W, Lavu S, Wood J G. et al . Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan.  Nature. 2003;  425 191-6
  • 110 Borra M T, Smith B C, Denu J M. Mechanism of human SIRT1 activation by resveratrol.  J Biol Chem. 2005;  280 17 187-95
  • 111 Nayagam V M, Wang X, Tan Y C, Poulsen A, Goh K C, Ng T. et al . SIRT1 modulating compounds from high-throughput screening as anti-inflammatory and insulin-sensitizing agents.  J Biomol Screen. 2006;  11 959-67
  • 112 Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F. et al . Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha.  Cell. 2006;  127 1109-22
  • 113 Shikama N, Lyon J, LaThangue N B. The p300/CBP family: Integrating signals with transcription factors and chromatin.  Trends Cell Biol. 1997;  7 230-6
  • 114 Giles R H, Peters D JM, Breuning M H. Conjunction dysfunction: CBP/p300 in human disease.  Trends Genet. 1998;  14 178-83
  • 115 Kubo I, Ochi M, Vieira P C, Komatsu S. Antitumor agents from the cashew (Anacardium occidentale) apple juice.  J Agric Food Chem. 1993;  41 1012-5
  • 116 Balasubramanyam K, Swaminathan V, Ranganathan A, Kundu T K. Small molecule modulators of histone acetyltransferase p300.  J Biol Chem. 2003;  278 19 134-40
  • 117 Varier R A, Swaminathan V, Balasubramanyam K, Kundu T K. Implications of small molecule activators and inhibitors of histone acetyltransferases in chromatin therapy.  Biochem Pharmacol. 2004;  68 1215-20
  • 118 Balasubramanyam K, Varier R A, Altaf M, Swaminathan V, Siddappa N B, Ranga U. et al . Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription.  J Biol Chem. 2004;  279 51 163-71
  • 119 Earnest D L, Holubec H, Wali R K, Jolley C S, Bissonette M, Bhattacharyya A K. et al . Chemoprevention of azoxymethane-induced colonic carcinogenesis by supplemental dietary ursodeoxycholic acid.  Cancer Res. 1994;  54 5071-4
  • 120 Wali R K, Frawley BP J r, Hartmann S, Roy H K, Khare S, Scaglione-Sewell B A. et al . Mechanism of action of chemoprotective ursodeoxycholate in the azoxymethane model of rat colonic carcinogenesis: potential roles of protein kinase C-alpha, -beta II, and -zeta.  Cancer Res. 1995;  55 5257-64
  • 121 Akare S, Jean-Louis S, Chen W, Wood D J, Powell A A, Martinez J D. Ursodeoxycholic acid modulates histone acetylation and induces differentiation and senescence.  Int J Cancer. 2006;  119 2958-69
  • 122 Available at http://clinicaltrials.gov/ct2/show/NCT00062023?intr= UDCA&rank=10. Accessed 2008
  • 123 Huyen Y, Zgheib O, Ditullio RA J r, Gorgoulis V G, Zacharatos P, Petty T J. et al . Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks.  Nature. 2004;  432 406-11
  • 124 Wang H, Huang Z Q, Xia L, Feng Q, Erdjument-Bromage H, Strahl B D. et al . Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor.  Science. 2001;  293 853-7
  • 125 Yu M C, Lamming D W, Eskin J A, Sinclair D A, Silver P A. The role of protein arginine methylation in the formation of silent chromatin.  Genes Dev. 2006;  20 3249-54
  • 126 Strahl B D, Briggs S D, Brame C J, Caldwell J A, Koh S S, Ma H. et al . Methylation of histone H4 at arginine 3 occurs in vivo and is mediated by the nuclear receptor coactivator PRMT1.  Curr Biol. 2001;  11 996-1000
  • 127 Nakashima K, Hagiwara T, Yamada M. Nuclear localization of peptidylarginine deiminase V and histone deimination in granulocytes.  J Biol Chem. 2002;  277 49 562-8
  • 128 Chang B, Chen Y, Zhao Y, Bruick R K. JMJD6 is a histone arginine demethylase.  Science. 2007;  318 444-7
  • 129 Schubeler D, MacAlpine D M, Scalzo D, Wirbelauer C, Kooperberg C, van Leeuwen F. et al . The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote.  Genes Dev. 2004;  18 1263-71
  • 130 Peters A H, Kubicek S, Mechtler K, O′Sullivan R J, Derijck A A, Perez-Burgos L. et al . Partitioning and plasticity of repressive histone methylation states in mammalian chromatin.  Mol Cell. 2003;  12 1577-89
  • 131 Lachner M, O'Sullivan R J, Jenuwein T. An epigenetic road map for histone lysine methylation.  J Cell Sci. 2003;  116 2117-24
  • 132 Margueron R, Trojer P, Reinberg D. The key to development: interpreting the histone code?.  Curr Opin Genet Dev. 2005;  15 163-76
  • 133 Kim S, Benoiton L, Paik W K. Epsilon-alkyllysinase. Purification and properties of the enzyme.  J Biol Chem. 1964;  239 3790-6
  • 134 Shi Y, Lan F, Matson C, Mulligan P, Whetstine J R, Cole P A. et al . Histone demethylation mediated by the nuclear amine oxidase homolog LSD1.  Cell. 2004;  119 941-53
  • 135 Metzger E, Wissmann M, Yin N, Muller J M, Schneider R, Peters A H. et al . LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription.  Nature. 2005;  437 436-9
  • 136 Trewick S C, McLaughlin P J, Allshire R C. Methylation: lost in hydroxylation?.  EMBO Rep. 2005;  6 315-20
  • 137 Tsukada Y, Fang J, Erdjument-Bromage H, Warren M E, Borchers C H, Tempst P. et al . Histone demethylation by a family of JmjC domain-containing proteins.  Nature. 2006;  439 811-6
  • 138 Bradley C, van der Meer R, Roodi N, Yan H, Chandrasekharan M B, Sun Z W. et al . Carcinogen-induced histone alteration in normal human mammary epithelial cells.  Carcinogenesis. 2007;  28 2184-92
  • 139 Huang Y, Greene E, Murray Stewart T, Goodwin A C, Baylin S B, Woster P M. et al . Inhibition of lysine-specific demethylase 1 by polyamine analogues results in reexpression of aberrantly silenced genes.  Proc Natl Acad Sci U S A. 2007;  104 8023-8
  • 140 Wissmann M, Yin N, Muller J M, Greschik H, Fodor B D, Jenuwein T. et al . Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression.  Nat Cell Biol. 2007;  9 347-53
  • 141 Zhang Y. Transcriptional regulation by histone ubiquitination and deubiquitination.  Genes Dev. 2003;  17 2733-40
  • 142 Shiio Y, Eisenman R N. Histone sumoylation is associated with transcriptional repression.  Proc Natl Acad Sci U S A. 2003;  100 13 225-30
  • 143 Niedergang C P, de Murcia G, Ittel M E, Pouyet J, Mandel P. Time course of polynucleosome relaxation and ADP-ribosylation. Correlation between relaxation and histone H1 hyper-ADP-ribosylation.  Eur J Biochem. 1985;  146 185-91

Prof. Dr. Manfred Jung

Institute of PharmaceuticalSciences

Albertstr. 25

79104 Freiburg

Germany

Phone: +49-761-203-4896

Fax: +49-761-203-6321

Email: manfred.jung@pharmazie.uni-freiburg.de

    >