Planta Med 2019; 85(07): 591-598
DOI: 10.1055/a-0806-7735
Biological and Pharmacological Activity
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

The Petroleum Ether Extract from Hypericum perforatum Root Cultures Exhibits Potent Antiproliferative Activity in Human Keratinocytes and Fibroblasts

Mariam Gaid*
1   Institut für Pharmazeutische Biologie, Technische Universität Braunschweig, Germany
3   Zentrum für Pharmaverfahrenstechnik PVZ, Technische Universität Braunschweig, Germany
,
Jendrik Füller*
2   Institut für Pharmazeutische Technologie, Technische Universität Braunschweig, Germany
3   Zentrum für Pharmaverfahrenstechnik PVZ, Technische Universität Braunschweig, Germany
,
Christel Müller-Goymann
2   Institut für Pharmazeutische Technologie, Technische Universität Braunschweig, Germany
3   Zentrum für Pharmaverfahrenstechnik PVZ, Technische Universität Braunschweig, Germany
› Author Affiliations
Further Information

Publication History

received 08 October 2018
revised 07 November 2018

accepted 21 November 2018

Publication Date:
04 December 2018 (online)

Abstract

The hyperforin content of Hypericum perforatum herb was repeatedly reported to be responsible for a multitude of pharmacological activities. Our recent report about the hyperforin accumulation in in vitro root cultures of H. perforatum provides an alternative perspective to achieve constant product quality and to serve the rapidly growing market. In this study, the antiproliferative effect of a petroleum ether extract from the in vitro root cultures was investigated. When normalized to 1 µM hyperforin content, the extract reduced the viability of human keratinocytes (HaCaT) and human dermal fibroblast monolayers to 33 and 36%, respectively, after 72 h of incubation. A cytotoxicity assay and live-dead cell staining confirmed that the extract lacked a cytotoxic effect and that the reduction in cell viability was mainly due to the antiproliferative activity. Application of the 1 µM hyperforin-normalized extract to a 3D artificial skin construct significantly reduced the proliferation of HaCaT in the presence of fibroblasts. This effect was proved by the reduction in thickness of the epidermal construct from 100 µm (control) to 17 µm (treated). Notably, 1 µM pure hyperforin lacked effectiveness in both monolayer cultures and 3D artificial skin constructs. Nor were fractions of the extract containing colupulone and xanthones active. The combination of these constituents also failed to reassemble the antiproliferative activity, which indicates a synergistic role of yet unidentified components present in the extract. Our findings may introduce H. perforatum root cultures as a novel lead system for the treatment of hypertrophic scars.

* Both authors contributed equally to this work


Supporting Information

 
  • References

  • 1 Linde K. St. Johnʼs Wort – an overview. Forsch Komplementmed 2009; 16: 146-155
  • 2 Gaid M, Biedermann E, Füller J, Haas P, Behrends S, Krull R, Scholl S, Wittstock U, Müller-Goymann C, Beerhues L. Biotechnological production of hyperforin for pharmaceutical formulation. Eur J Pharm Biopharm 2018; 126: 10-26
  • 3 Czygan FC. Cultural history and mysticism of St Johnʼs wort. From 2500 year old apotropaic to modern antidepressant [Vom 2500 jahre alten Apotropaikum zum aktuellen Antidepressivum. Kulturgeschichte und Mystik des Johanniskrauts]. Pharmazie in Unserer Zeit 2003; 32: 184-190
  • 4 Müller WE, Singer A, Wonnemann M. Hyperforin – antidepressant activity by a novel mechanism of action. Pharmacopsychiatry 2001; 34: S98-S102
  • 5 Oliveira AI, Pinho C, Sarmento B, Dias ACP. Neuroprotective activity of Hypericum perforatum and its major components. Front Plant Sci 2016; 7: 1004
  • 6 Griffith TN, Varela-Nallar L, Dinamarca MC, Inestrosa NC. Neurobiological effects of hyperforin and its potential in Alzheimerʼs disease therapy. Curr Med Chem 2010; 17: 391-406
  • 7 Schempp CM, Kirkin V, Simon-Haarhaus B, Kersten A, Kiss J, Termeer CC, Gilb B, Kaufmann T, Borner C, Sleeman JP, Simon JC. Inhibition of tumour cell growth by hyperforin, a novel anticancer drug from St. Johnʼs wort that acts by induction of apoptosis. Oncogene 2002; 21: 1242-1250
  • 8 Merhi F, Tang R, Piedfer M, Mathieu J, Bombarda I, Zaher M, Kolb JP, Billard C, Bauvois B. Hyperforin inhibits Akt1 kinase activity and promotes caspase-mediated apoptosis involving bad and noxa activation in human myeloid tumor cells. PLoS One 2011; 6: e25963
  • 9 Wölfle U, Seelinger G, Schempp CM. Topical application of St Johnʼs wort (Hypericum perforatum). Planta Med 2014; 80: 109-120
  • 10 Najafizadeh P, Hashemian F, Mansouri P, Farshi S, Surmaghi MS, Chalangari R. The evaluation of the clinical effect of topical St Johns wort (Hypericum perforatum L.) in plaque type psoriasis vulgaris: a pilot study. Australas J Dermatol 2012; 53: 131-135
  • 11 Meinke MC, Richter H, Kleemann A, Lademann J, Tscherch K, Rohn S, Schempp CM. Characterization of atopic skin and the effect of a hyperforin-rich cream by laser scanning microscopy. J Biomed Opt 2015; 20: 051013
  • 12 Öztürk N, Korkmaz S, Öztürk Y. Wound-healing activity of St. Johnʼs Wort (Hypericum perforatum L.) on chicken embryonic fibroblasts. J Ethnopharmacol 2007; 111: 33-39
  • 13 Chatterjee SS. Antidepressant activity of hypericum perforatum and hyperforin: the neglected possibility. Pharmacopsychiatry 1998; 31: 7-15
  • 14 Schempp CM, Windeck T, Hezel S, Simon JC. Topical treatment of atopic dermatitis with St. Johnʼs wort cream – a randomized, placebo controlled, double blind half-side comparison. Phytomedicine 2003; 10: 31-37
  • 15 Heinrich U, Tronnier H. St Johnʼs wort improves problematic skin. Pharmazeutische Zeitung 2004; 149: 3318-3320
  • 16 Füller J, Müller-Goymann CC. Anti-proliferative and anti-migratory effects of hyperforin in 2D and 3D artificial constructs of human dermal fibroblasts – a new option for hypertrophic scar treatment?. Eur J Pharm Biopharm 2018; 126: 108-114
  • 17 Brockmöller J. Hypericin and pseudohypericin: pharmacokinetics and effects on photosensitivity in humans. Pharmacopsychiatry 1997; 30: 94-101
  • 18 Schempp CM, Winghofer B, Lüdtke R, Simon-Haarhaus B, Schöpf E, Simon JC. Topical application of St Johnʼs wort (Hypericum perforatum L.) and of its metabolite hyperforin inhibits the allostimulatory capacity of epidermal cells. Br J Dermatol 2000; 142: 979-984
  • 19 Gaid M, Haas P, Beuerle T, Scholl S, Beerhues L. Hyperforin production in Hypericum perforatum root cultures. J Biotechnol 2016; 222: 47-55
  • 20 Haas P, Gaid M, Zarinwall A, Beerhues L, Scholl S. Downstream processing of hyperforin from Hypericum perforatum root cultures. Eur J Pharm Biopharm 2018; 104-107
  • 21 Karabín M, Hudcová T, Jelínek L, Dostálek P. Biologically active compounds from hops and prospects for their use. Compr Rev Food Sci 2016; 15: 542-567
  • 22 Stephan TE, Ngo EO, Nutter LM. Hexahydrocolupulone and its antitumor cell proliferation activity in vitro . Biochem Pharmacol 1998; 55: 505-514
  • 23 Tyrrell E, Archer R, Tucknott M, Colston K, Pirianov G, Ramanthan D, Dhillon R, Sinclair A, Skinner GA. The synthesis and anticancer effects of a range of natural and unnatural hop β-acids on breast cancer cells. Phytochem Lett 2012; 5: 144-149
  • 24 Azevedo CMG, Afonso CMM, Soares JX, Reis S, Sousa D, Lima RT, Vasconcelos MH, Pedro M, Barbosa J, Gales L, Pinto MMM. Pyranoxanthones: synthesis, growth inhibitory activity on human tumor cell lines and determination of their lipophilicity in two membrane models. Eur J Med Chem 2013; 69: 798-816
  • 25 Genovese S, Fiorito S, Taddeo VA, Epifano F. Recent developments in the pharmacology of prenylated xanthones. Drug Discov Today 2016; 21: 1814-1819
  • 26 Werner S, Krieg T, Smola H. Keratinocyte-fibroblast interactions in wound healing. J Invest Dermatol 2007; 127: 998-1008
  • 27 Odabas MS, Raduğienë J, Camas N, Janulis V, Ivanauskas L, Çirak C. The quantitative effects of temperature and light intensity on hyperforin and hypericins accumulation in Hypericum perforatum L. J Med Plants Res 2009; 3: 519-525
  • 28 Trifunović S, Vajs V, Macura S, Juranić N, Djarmati Z, Jankov R, Milosavljević S. Oxidation products of hyperforin from Hypericum perforatum . Phytochemistry 1998; 49: 1305-1310
  • 29 Vajs V, Vugdelija S, Trifunović S, Karadžić I, Juranić N, Macura S, Milosavljević S. Further degradation product of hyperforin from Hypericum perforatum (St. Johnʼs Wort). Fitoterapia 2003; 74: 439-444
  • 30 Böttcher H, Günther I, Kabelitz L. Physiological postharvest responses of Common Saint-Johnʼs wort herbs (Hypericum perforatum L.). Postharvest Biol Technol 2003; 29: 343-351
  • 31 Müller ML, Essin K, Hill K, Beschmann H, Rubant S, Schempp CM, Gollasch M, Boehncke WH, Harteneck C, Muller WE, Leuner K. Specific TRPC6 channel activation, a novel approach to stimulate keratinocyte differentiation. J Biol Chem 2008; 283: 33942-33954
  • 32 Füller J, Kellner T, Gaid M, Beerhues L, Müller-Goymann CC. Stabilization of hyperforin dicyclohexylammonium salt with dissolved albumin and albumin nanoparticles for studying hyperforin effects on 2D cultivation of keratinocytes in vitro . Eur J Pharm Biopharm 2018; 126: 115-122
  • 33 Shephard P, Hinz B, Smola-Hess S, Meister JJ, Krieg T, Smola H. Dissecting the roles of endothelin, TGF-β and GM-CSF on myofibroblast differentiation by keratinocytes. Thromb Haemost 2004; 92: 262-274
  • 34 Lamy V, Roussi S, Chaabi M, Gossé F, Schall N, Lobstein A, Raul F. Chemopreventive effects of lupulone, a hop β-acid, on human colon cancer-derived metastatic SW620 cells and in a rat model of colon carcinogenesis. Carcinogenesis 2007; 28: 1575-1581
  • 35 Siegel L, Miternique-Grosse A, Griffon C, Klein-Soyer C, Lobstein A, Raul F, Stephan D. Antiangiogenic properties of lupulone, a bitter acid of hop cones. Anticancer Res 2008; 28: 289-294
  • 36 Van Cleemput M, Cattoor K, de Bosscher K, Haegeman G, de Keukeleire D, Heyerick A. Hop (Humulus lupulus)-derived bitter acids as multipotent bioactive compounds. J Nat Prod 2009; 72: 1220-1230
  • 37 Benjakul R, Kongkaneramit L, Sarisuta N, Moongkarndi P, Müller-Goymann CC. Cytotoxic effect and mechanism inducing cell death of α-mangostin liposomes in various human carcinoma and normal cells. Anticancer Drugs 2015; 26: 824-834
  • 38 Ghasemi Pirbalouti A, Fatahi-Vanani M, Craker L, Shirmardi H. Chemical composition and bioactivity of essential oils of Hypericum helianthemoides, Hypericum perforatum and Hypericum scabrum . Pharm Biol 2014; 52: 175-181
  • 39 Quassinti L, Lupidi G, Maggi F, Sagratini G, Papa F, Vittori S, Bianco A, Bramucci M. Antioxidant and antiproliferative activity of Hypericum hircinum L. subsp. majus (Aiton) N. Robson essential oil. Nat Prod Res 2013; 27: 862-868
  • 40 Gamborg OL, Miller RA, Ojima K. Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 1968; 50: 151-158
  • 41 Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plantarum 1962; 15: 473-497
  • 42 Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65: 55-63
  • 43 Weber C, Müller-Goymann CC. Usefulness of a 3D skin construct in the detection of regenerative effects after previous SDS damage. J Drug Deliv Sci Tec 2009; 19: 337-342
  • 44 Kolditz F, Krausze J, Heinz DW, Niemann HH, Müller-Goymann CC. Wound healing potential of a dimeric InlB variant analyzed by in vitro experiments on re-epithelialization of human skin models. Eur J Pharm Biopharm 2014; 86: 277-283