Planta Med 2019; 85(11/12): 925-933
DOI: 10.1055/a-0921-7602
Biological and Pharmacological Activities
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

A FLIPR Assay for Discovery of GABAA Receptor Modulators of Natural Origin[*]

Maria Teresa Faleschini
1   Pharmaceutical Biology, Pharmacenter, University of Basel, Basel, Switzerland
,
Anne Maier
2   Institute for Pharma Technology, School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Muttenz, Switzerland
,
Sarah Fankhauser
2   Institute for Pharma Technology, School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Muttenz, Switzerland
,
Katharina Thasis
2   Institute for Pharma Technology, School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Muttenz, Switzerland
,
Simon Hebeisen
3   BʼSys GmbH, Witterswil, Switzerland
,
Matthias Hamburger
1   Pharmaceutical Biology, Pharmacenter, University of Basel, Basel, Switzerland
,
Veronika Butterweck
2   Institute for Pharma Technology, School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Muttenz, Switzerland
4   Zeller Medical AG, Romanshorn, Switzerland
› Author Affiliations
Further Information

Publication History

received 04 March 2019
revised 09 May 2019

accepted 10 May 2019

Publication Date:
24 May 2019 (online)

Abstract

A fluorometric imaging plate reader (FLIPR) assay utilizing Chinese hamster ovary (CHO) cells stably transfected with GABAA receptors of α 1 β 2 γ 2 subunit composition was evaluated and validated for rapid screening of plant extract libraries and efficient localization of active compounds in extracts. Validation was performed with pure compounds and extracts known to contain allosteric GABAA receptor modulators. Plants extracts that had been previously reported as active in an assay using Xenopus laevis oocytes transiently expressing GABAA receptors of α 1 β 2 γ 2 subunit composition were also active in the FLIPR assay. A protocol for HPLC-based activity profiling was developed, whereby separations of 0.4 – 1.2 mg of extracts on an analytical HPLC column were found to be sufficient for the sensitivity of the bioassay. The protocol successfully localized the activity of known GABAergic natural products, such as magnolol in Magnolia officinalis, valerenic acid in Valeriana officinalis, and piperine in Piper nigrum extract. EC50 values of compounds (magnolol: 4.81 ± 1.0 µM, valerenic acid: 12.56 ± 1.2 µM, and piperine: 5.76 ± 0.7 µM) were found to be comparable or lower than those reported using Xenopus oocyte assays.

* Dedicated to Professor Dr. Cosimo Pizzaʼs 70th birthday in recognition of his outstanding contribution to natural product research.


Supporting Information

 
  • References

  • 1 Sigel E, Steinmann ME. Structure, function, and modulation of GABAA receptors. J Biol Chem 2012; 287: 40224-40231
  • 2 Wu C, Sun D. GABA receptors in brain development, function, and injury. Metab Brain Dis 2015; 30: 367-379
  • 3 Whiting PJ. The GABAA receptor gene family: new opportunities for drug development. Curr Opin Drug Discov Devel 2003; 6: 648-657
  • 4 Möhler H. GABAA receptor diversity and pharmacology. Cell Tissue Res 2006; 326: 505-516
  • 5 Herbison AE, Moenter SM. Depolarising and hyperpolarising actions of GABAA receptor activation on gonadotrophin-releasing hormone neurones: towards an emerging consensus. J Neuroendocrinol 2011; 23: 557-569
  • 6 Sigel E, Ernst M. The benzodiazepine binding sites of GABAA receptors. Trends Pharmacol Sci 2018; 39: 659-671
  • 7 Rudolph U, Knoflach F. Beyond classical benzodiazepines: novel therapeutic potential of GABAA receptor subtypes. Nat Rev Drug Discov 2011; 10: 685-697
  • 8 Möhler H. GABAA receptors in central nervous system disease: anxiety, epilepsy, and insomnia. J Recept Signal Transduct 2006; 26: 731-740
  • 9 Lancel M. Role of GABAA receptors in the regulation of sleep: initial sleep responses to peripherally administered modulators and agonists. Sleep 1999; 22: 33-42
  • 10 Moradi-Afrapoli F, Ebrahimi SN, Smiesko M, Hamburger M. HPLC-based activity profiling for GABAA receptor modulators in extracts: validation of an approach utilizing a larval zebrafish locomotor assay. J Nat Prod 2017; 80: 1548-1557
  • 11 Kim HJ, Baburin I, Khom S, Hering S, Hamburger M. HPLC-based activity profiling approach for the discovery of GABAA receptor ligands using an automated two microelectrode voltage clamp assay on Xenopus oocytes. Planta Med 2008; 74: 521-526
  • 12 Kopp S, Baur R, Sigel E, Möhler H, Altmann KH. Highly potent modulation of GABAA receptors by valerenic acid derivatives. ChemMedChem 2010; 5: 678-681
  • 13 Zaugg J, Baburin I, Strommer B, Kim HJ, Hering S, Hamburger M. HPLC-based activity profiling: discovery of piperine as a positive GABAA receptor modulator targeting a benzodiazepine-independent binding site. J Nat Prod 2010; 73: 185-191
  • 14 Zaugg J, Eickmeier E, Rueda DC, Hering S, Hamburger M. HPLC-based activity profiling of Angelica pubescens roots for new positive GABAA receptor modulators in Xenopus oocytes. Fitoterapia 2011; 82: 434-440
  • 15 Eigenmann DE, Dürig C, Jähne EA, Smieško M, Culot M, Gosselet F, Cecchelli R, Helms HCC, Brodin B, Wimmer L, Mihovilovic MD, Hamburger M, Oufir M. In vitro blood–brain barrier permeability predictions for GABAA receptor modulating piperine analogs. Eur J Pharm Biopharm 2016; 103: 118-126
  • 16 Schöffmann A, Wimmer L, Goldmann D, Khom S, Hintersteiner J, Baburin I, Schwarz T, Hintersteininger M, Pakfeifer P, Oufir M, Hamburger M, Erker T, Ecker GF, Mihovilovic MD, Hering S. Efficient modulation of γ-aminobutyric acid type A receptors by piperine derivatives. J Med Chem 2014; 57: 5602-5619
  • 17 Beutler JA. Natural products as a foundation for drug discovery. Curr Protoc Pharmacol 2009; 46: 9.11.1-9.11.21
  • 18 Potterat O, Hamburger M. Concepts and technologies for tracking bioactive compounds in natural product extracts: generation of libraries, and hyphenation of analytical processes with bioassays. Nat Prod Rep 2013; 30: 546-564
  • 19 Potterat O, Hamburger M. Combined use of extract libraries and HPLC-based activity profiling for lead discovery: potential, challenges, and practical considerations. Planta Med 2014; 80: 1171-1181
  • 20 Smith AJ, Simpson PB. Methodological approaches for the study of GABAA receptor pharmacology and functional responses. Anal Bioanal Chem 2003; 377: 843-851
  • 21 Möhler H, Richards JG. Agonist and antagonist benzodiazepine receptor interaction in vitro . Nature 1981; 294: 763-765
  • 22 Smith AJ, Alder L, Silk J, Adkins C, Fletcher AE, Scales T, Kerby J, Marshall G, Wafford KA, McKernan RM, Atack JR. Effect of α subunit on allosteric modulation of ion channel function in stably expressed human recombinant γ-aminobutyric acid A receptors determined using 36Cl ion flux. Mol Pharmacol 2001; 59: 1108-1118
  • 23 Smith AJ, McKernan RM, Atack JR. Benzodiazepine modulation of recombinant α 1 β 3 γ 2 GABAA receptor function efficacy determination using the cytosensor microphysiometer. Eur J Pharmacol 1998; 359: 261-269
  • 24 Kuner T, Augustine GJ. A genetically encoded ratiometric indicator for chloride: capturing chloride transients in cultured hippocampal neurons. Neuron 2000; 27: 447-459
  • 25 Baburin I, Beyl S, Hering S. Automated fast perfusion of Xenopus oocytes for drug screening. Pflüg Arch 2006; 453: 117-123
  • 26 Challal S, Buenafe OE, Queiroz EF, Maljevic S, Marcourt L, Bock M, Kloeti W, Dayrit FM, Harvey AL, Lerche H, Esguerra CV, de Witte PA, Wolfender JL, Crawford AD. Zebrafish bioassay-guided microfractionation identifies anticonvulsant steroid glycosides from the Philippine medicinal plant Solanum torvum . ACS Chem Neurosci 2014; 5: 993-1004
  • 27 Crawford AD, Esguerra CV, de Witte PA. Fishing for drugs from nature: zebrafish as a technology platform for natural product discovery. Planta Med 2008; 74: 624-632
  • 28 Liu J, Chen T, Norris T, Knappenberger K, Huston J, Wood M, Bostwick R. A high-throughput functional assay for characterization of γ-aminobutyric acid A channel modulators using cryopreserved transiently transfected cells. Assay Drug Dev Technol 2008; 6: 781-786
  • 29 Arkin MR, Connor PR, Emkey R, Garbison KE, Heinz BA, Wiernicki TR, Johnston PA, Kandasamy RA, Rankl NB, Sittampalam S. FLIPR Assays for GPCR and Ion Channel Targets. In: Sittampalam GS, Coussens NP, Brimacombe K, Grossman A, Arkin M, Auld D, Austin C, Baell J, Bejcek B, Caaveiro JMM, Chung TDY, Dahlin JL, Devanaryan V, Foley TL, Glicksman M, Hall MD, Haas JV, Inglese J, Iversen PW, Kahl SD, Kales SC, Lal-Nag M, Li Z, McGee J, McManus O, Riss R, Trask jr. OJ, Weidner JR, Wildey MJ, Xia M, Xu X. eds. Assay Guidance Manual. Bethesda: Eli Lilly & Company and the National Center for Advancing Translational Sciences; 2004: 1-32
  • 30 Joesch C, Guevarra E, Parel SP, Bergner A, Zbinden P, Konrad D, Albrecht H. Use of FLIPR membrane potential dyes for validation of high-throughput screening with the FLIPR and µARCS technologies: identification of ion channel modulators acting on the GABAA receptor. J Biomol Screen 2008; 13: 218-228
  • 31 Baxter DF, Kirk M, Garcia AF, Raimondi A, Holmqvist MH, Flint KK, Bojanic D, Distefano PS, Curtis R, Xie Y. A novel membrane potential-sensitive fluorescent dye improves cell-based assays for ion channels. J Biomol Screen 2002; 7: 79-85
  • 32 Chen Q, Yim PD, Yuan N, Johnson J, Cook JM, Smith S, Ionescu-Zanetti C, Wang ZJ, Arnold LA, Emala CW. Comparison of cell expression formats for the characterization of GABAA channels using a microfluidic patch clamp system. Assay Drug Dev Technol 2012; 10: 325-335
  • 33 Nakahiro M, Arakawa O, Narahashi T, Ukai S, Kato Y, Nishinuma K, Nishimura T. Dimethyl sulfoxide (DMSO) blocks GABA-induced current in rat dorsal root ganglion neurons. Neurosci Lett 1992; 138: 5-8
  • 34 Taferner B, Schuehly W, Huefner A, Baburin I, Wiesner K, Ecker GF, Hering S. Modulation of GABAA-receptors by honokiol and derivatives: subtype selectivity and structure–activity relationship. J Med Chem 2011; 54: 5349-5361
  • 35 Khom S, Baburin I, Timin E, Hohaus A, Trauner G, Kopp B, Hering S. Valerenic acid potentiates and inhibits GABAA receptors: molecular mechanism and subunit specificity. Neuropharmacology 2007; 53: 178-187
  • 36 Johnston GA, Hanrahan JR, Chebib M, Duke RK, Mewett KN. Modulation of ionotropic GABA receptors by natural products of plant origin. Adv Pharmacol 2006; 54: 285-316
  • 37 Karlsson U, Druzin M, Johansson S. Cl-concentration changes and desensitization of GABAA and glycine receptors. J Gen Physiol 2011; 138: 609-626
  • 38 Bianchi MT, Macdonald RL. Slow phases of GABAA receptor desensitization: structural determinants and possible relevance for synaptic function. J Physiol 2002; 544: 3-18
  • 39 Mohn T, Cutting B, Ernst B, Hamburger M. Extraction and analysis of intact glucosinolates – a validated pressurized liquid extraction/liquid chromatography–mass spectrometry protocol for Isatis tinctoria, and qualitative analysis of other cruciferous plants. J Chromatogr A 2007; 1166: 142-151