Planta Med 2019; 85(16): 1233-1241
DOI: 10.1055/a-1013-1276
Biological and Pharmacological Activity
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Development and Characterization of the Neuroregenerative Xanthohumol C/Hydroxypropyl-β-cyclodextrin Complex Suitable for Parenteral Administration

Michael Kirchinger
1   Organic-Analytical Chemistry, Weihenstephan-Triesdorf University of Applied Sciences, Straubing, Germany
2   TUM Campus Straubing, Straubing, Germany
,
Lara Bieler
3   Institute of Experimental Neuroregeneration, Paracelsus Medical University Salzburg, Salzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
,
Julia Tevini
4   Department of Laboratory Medicine, Paracelsus Medical University, Salzburg, Austria
,
Michael Vogl
3   Institute of Experimental Neuroregeneration, Paracelsus Medical University Salzburg, Salzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
,
Elisabeth Haschke-Becher
4   Department of Laboratory Medicine, Paracelsus Medical University, Salzburg, Austria
,
Thomas K. Felder
4   Department of Laboratory Medicine, Paracelsus Medical University, Salzburg, Austria
5   Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
,
Sebastien Couillard-Després
3   Institute of Experimental Neuroregeneration, Paracelsus Medical University Salzburg, Salzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
6   Austrian Cluster for Tissue Regeneration, Salzburg, Austria
,
Herbert Riepl
1   Organic-Analytical Chemistry, Weihenstephan-Triesdorf University of Applied Sciences, Straubing, Germany
2   TUM Campus Straubing, Straubing, Germany
,
Corinna Urmann
1   Organic-Analytical Chemistry, Weihenstephan-Triesdorf University of Applied Sciences, Straubing, Germany
2   TUM Campus Straubing, Straubing, Germany
› Author Affiliations
Further Information

Publication History

received 16 April 2019
revised 12 September 2019

accepted 12 September 2019

Publication Date:
14 October 2019 (online)

Abstract

The chroman-like chalcone Xanthohumol C, originally found in hops, was demonstrated to be a potent neuroregenerative and neuroprotective natural product and therefore constitutes a strong candidate for further pharmaceutical research. The bottleneck for in vivo experiments is the low water solubility of this chalcone. Consequently, we developed and validated a suitable formulation enabling in vivo administration. Cyclodextrins were used as water-soluble and nontoxic complexing agents, and the complex of Xanthohumol C and 2-hydroxypropyl-β-cyclodextrin was characterized using HPLC, HPLC-MS, NMR, and differential scanning calorimetry. The water solubility of Xanthohumol C increases with increasing concentrations of cyclodextrin. Using 50 mM 2-hydroxypropyl-β-cyclodextrin, solubility was increased 650-fold. Furthermore, in vitro bioactivity of Xanthohumol C in free and complexed form did not significantly differ, suggesting the release of Xanthohumol C from 2-hydroxypropyl-β-cyclodextrin. Finally, a small-scaled in vivo experiment in a rat model showed that after i. p. administration of the complex, Xanthohumol C can be detected in serum, the brain, and the cerebrospinal fluid at 1 and 6 h post-administration. Mean (± SD) Xanthohumol C serum concentrations after 1, 6, and 12 h were determined as 463.5 (± 120.9), 61.9 (± 13.4), and 9.3 (± 0.8) ng/mL upon i. v., and 294.3 (± 22.4), 45.5 (± 0.7), and 13 (± 1.0) ng/mL after i. p. application, respectively. Accordingly, the formulation of Xanthohumol C/2-hydroxypropyl-β-cyclodextrin is suitable for further in vivo experiments and further pharmaceutical research aiming for the determination of its neuroregenerative potential in animal disease models.

 
  • References

  • 1 Raleigh VS. Trends in life expectancy in EU and other OECD countries. OECD Health Working Papers 2019; 108 doi:10.1787/223159ab-en
  • 2 Bickel H, Cooper B. Incidence and relative risk of dementia in an urban elderly population: findings of a prospective field study. Psychol Med 1994; 24: 179-192
  • 3 Durães F, Pinto M, Sousa E. Old drugs as new treatments for neurodegenerative diseases. Pharmaceuticals (Basel) 2018; 11: 44
  • 4 Schneider LS, Mangialasche F, Andreasen N, Feldman H, Giacobini E, Jones R, Mantua V, Mecocci P, Pani L, Winblad B. Clinical trials and late-stage drug development for Alzheimerʼs disease: an appraisal from 1984 to 2014. J Intern Med 2014; 275: 251-283
  • 5 Oberbauer E, Urmann C, Steffenhagen C, Bieler L, Brunner D, Furtner T, Humpel C, Baumer B, Bandtlow C, Couillard-Despres S, Rivera FJ, Riepl H, Aigner L. Chroman-like cyclic prenylflavonoids promote neuronal differentiation and neurite outgrowth and are neuroprotective. J Nutr Biochem 2013; 24: 1953-1962
  • 6 Urmann C, Oberbauer E, Couillard-Despres S, Aigner L, Riepl H. Neurodifferentiating potential of 8-prenylnaringenin and related compounds in neural precursor cells and correlation with estrogen-like activity. Planta Med 2015; 81: 305-311
  • 7 Brewster ME, Loftsson T. Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev 2007; 59: 645-666
  • 8 Uekama K, Hirayama F, Irie T. Cyclodextrin drug carrier systems. Chem Rev 1998; 98: 2045-2076
  • 9 Irie T, Uekama K. Pharmaceutical applications of cyclodextrins. III. Toxicological issues and safety evaluation. J Pharm Sci 1996; 86: 147-162
  • 10 Jullian C, Miranda S, Zapata-Torres G, Mendizabal F, Olea-Azar C. Studies of inclusion complexes of natural and modified cyclodextrin with (+)catechin by NMR and molecular modeling. Bioorg Med Chem 2007; 15: 3217-3224
  • 11 Gu FG, Wang Y, Meng GD, Han HB, Wu CZ. Investigation of a fenofibrate-hydroxypropyl-beta-cyclodextrin system prepared by a co-grinding method. Pharmazie 2012; 67: 143-146
  • 12 Szente L, Szejtli J. Highly soluble cyclodextrin derivatives: chemistry, properties, and trends in development. Adv Drug Deliv Rev 1999; 36: 17-28
  • 13 Rodal SK, Skretting G, Garred O, Vilhardt F, van Deurs B, Sandvig K. Extraction of cholesterol with methyl-beta-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles. Mol Biol Cell 1999; 10: 961-974
  • 14 Seiler K, Szathmary S, Huss H, Coster de R, Junge W. Safety Profile and intravenous Tolerance of HP-β-CD after increasing single Dose. In: Duchene D. ed. Minutes of the 5th International Symposium on Cyclodextrins. Paris: Editions de Santé; 1990: 518-521
  • 15 Kalogeropoulos N, Mourtzinos I, Yannakopoulou K, Gioxari A, Chiou A, Karathanos V. Encapsulation of Hypericum perforatum (St Johnʼs wort) methanolic extract in β-cyclodextrin. Planta Med 2008; 74: PC37
  • 16 Feflea S, Peev C, Soica C, Ciurlea S, Dehelean C. Betulin in formulation with ramified gamma type cyclodextrin targeting tumour cells and angiogenesis. Planta Med 2010; 76: 610
  • 17 Loftsson T, Duchene D. Cyclodextrins and their pharmaceutical applications. Int J Pharm 2007; 329: 1-11
  • 18 Gould S, Scott RC. 2-Hydroxypropyl-beta-cyclodextrin (HP-beta-CD): a toxicology review. Food Chem Toxicol 2005; 43: 1451-1459
  • 19 Adeoye O, Cabral-Marques H. Cyclodextrin nanosystems in oral drug delivery: A mini review. Int J Pharm 2017; 531: 521-531
  • 20 Higuchi T, Connors KA. Phase-solubility techniques. Adv Anal Chem Instr 1965; 4: 117-211
  • 21 Gazpio C, Sanchez M, Garcia-Zubiri IX, Velaz I, Martinez-Oharriz C, Martin C, Zornoza A. HPLC and solubility study of the interaction between pindolol and cyclodextrins. J Pharm Biomed Anal 2005; 37: 487-492
  • 22 Ravelet C, Geze A, Villet A, Grosset C, Ravel A, Wouessidjewe D, Peyrin E. Chromatographic determination of the association constants between nimesulide and native and modified beta-cyclodextrins. J Pharm Biomed Anal 2002; 29: 425-430
  • 23 Tommasini S, Raneri D, Ficarra R, Calabro ML, Stancanelli R, Ficarra P. Improvement in solubility and dissolution rate of flavonoids by complexation with beta-cyclodextrin. J Pharm Biomed Anal 2004; 35: 379-387
  • 24 Connors KA. The stability of cyclodextrin complexes in solution. Chem Rev 1997; 97: 1325-1358
  • 25 Aigner Z, Berkesi O, Farkas G, Szabo-Revesz P. DSC, X-ray and FTIR studies of a gemfibrozil/dimethyl-beta-cyclodextrin inclusion complex produced by co-grinding. J Pharm Biomed Anal 2012; 57: 62-67
  • 26 Guo Y, Chen Y, Ma H. Inclusion mechanism and heat stability of the complex of 4′-hydroxychalcone and hydroxylpropyl-β-cyclodextrin. Trop J Pharm Res 2014; 13: 1971-1977
  • 27 Cui L, Zhang ZH, Sun E, Jia XB. Effect of beta-cyclodextrin complexation on solubility and enzymatic conversion of naringin. Int J Mol Sci 2012; 13: 14251-14261
  • 28 George S, Vasudevan D. Studies on the preparation, characterization, and solubility of 2-HP-β-cyclodextrin-meclizine HCl inclusion complexes. J Young Pharm 2012; 4: 220-227
  • 29 Yamaguchi N, Ono M. Novel compositions containing xanthohumol-cyclodextrin complexes. US Patent W02009108379A1, 2009
  • 30 Teixeira MG, de Assis JV, Soares CG, Venancio MF, Lopes JF, Nascimento jr. CS, Anconi CP, Carvalho GS, Lourenco CS, de Almeida MV, Fernandes SA, de Almeida WB. Theoretical and experimental study of inclusion complexes formed by isoniazid and modified beta-cyclodextrins: 1H NMR structural determination and antibacterial activity evaluation. J Phys Chem B 2014; 118: 81-93
  • 31 Schneider HJ, Hacket F, Rudiger V, Ikeda H. NMR studies of cyclodextrins and cyclodextrin complexes. Chem Rev 1998; 98: 1755-1786
  • 32 Ali SM, Upadhyay SK. Complexation study of midazolam hydrochloride with β‐cyclodextrin: NMR spectroscopic study in solution. Magn Reson Chem 2008; 46: 676-679
  • 33 Prokai L, Ramanatham R, Nawrocki J, Eyler J. Electrospray ionization mass spectrometry of cyclodextrin complexes of amino acids and peptides. J Incl Phenom Mol Recognit Chem 1996; 25: 117-120
  • 34 Rojas-Aguirre Y, Hernandez-Luis F, Mendoza-Martinez C, Sotomayor CP, Aguilar LF, Villena F, Castillo I, Hernandez DJ, Suwalsky M. Effects of an antimalarial quinazoline derivative on human erythrocytes and on cell membrane molecular models. Biochim Biophys Acta 2012; 1818: 738-746
  • 35 Karl C, Couillard-Despres S, Prang P, Munding M, Kilb W, Brigadski T, Plotz S, Mages W, Luhmann H, Winkler J, Bogdahn U, Aigner L. Neuronal precursor-specific activity of a human doublecortin regulatory sequence. J Neurochem 2005; 92: 264-282
  • 36 Peters F, Hartung M, Herbold M, Schmitt G, Daldrup T, Mußhoff F. Requirements for the validatin of analytical methods (Appendix to the GFTCh Guidelines for quality assurance in forensic-toxicological analyses). Toxichem Krimtech 2009; 76: 185-208
  • 37 Ficarra R, Tommasini S, Raneri D, Calabrò ML, Di Bella MR, Rustichelli C, Gamberini MC, Ficarra P. Study of flavonoids/beta-cyclodextrins inclusion complexes by MR, FT-IR, DSC, X-ray investigation. J Pharm Biomed Anal 2002; 29: 1005-1014
  • 38 Dyer BW, Ferrer FA, Klinedinst DK, Rodriguez R. A noncommercial dual luciferase enzyme assay system for reporter gene analysis. Anal Biochem 2000; 282: 158-161
  • 39 Karl C, Couillard-Despres S, Prang P, Munding M, Kilb W, Brigadski T, Plotz S, Mages W, Luhmann H, Winkler J, Bogdahn U, Aigner L. Neuronal precursor-specific activity of a human doublecortin regulatory sequence. J Neurochem 2005; 92: 264-282