Planta Med 2020; 86(08): 556-564
DOI: 10.1055/a-1147-9196
Biological and Pharmacological Activity
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Network Pharmacological Screening of the Active Ingredients and Hypoglycemic Effect of Isodon rubescens in the Treatment of Diabetes

Xue Jintao
1   School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan Province, PR China
,
Yu Shasha
1   School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan Province, PR China
,
Wang Jincai
3   Department of Pharmacy, the First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, PR China
,
Li Chunyan
1   School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan Province, PR China
2   Sanquan College of Xinxiang Medical University, Xinxiang, Henan Province, PR China
,
Yang Mengya
1   School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan Province, PR China
,
Shi Yongli
1   School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan Province, PR China
› Author Affiliations
Supported by: National Natural Science Foundation of China for Youth Program 81703458
Supported by: the National Natural Science Foundation of China U1804175
Further Information

Publication History

received 01 January 2020
revised 12 March 2020

accepted 25 March 2020

Publication Date:
15 April 2020 (online)

Abstract

This study was firstly to study the relationship of “ingredient-target-pathway” and the pharmacological effects of Isodon rubescens for the treatment of diabetes. Based on a network pharmacology method, 138 active ingredients of Isodon rubescens were screened from the relative literatures, and their targets were confirmed by comparing these with the hypoglycemic targets in the DrugBank database. Results showed that Isodon rubescens contained 25 hypoglycemic ingredients, such as rabdoternin A, rabdoternin B, and epinodosinol. These ingredients could activate 6 hypoglycemic targets, including 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), integrin α-L (ITGAL), integrin β-2 (ITGB2), progesterone receptor (PGR), glucocorticoid receptor (NR3C1), and nuclear receptor subfamily 1 group I member 2 (NR1I2). These targets were involved in 94 signaling pathways, such as the Rap1, PI3K-Akt, and HIF-1 signaling pathways. The cell viability showed that the human umbilical vein endothelial cells (HUVECs) treated with alcohol extract (1.00 g/L) and the water extract (0.13 – 0.50 g/L) exhibited high viability compared to the model group (p < 0.05), respectively. 0In animal experiments, the rats treated with water extract of Isodon rubescens showed significant hypoglycemic effects compared to rats in the model group (p < 0.05). Overall, this approach provides an efficient strategy to explore hypoglycemic ingredients of Isodon rubescens and other traditional Chinese medicine.

Supporting Information

 
  • References

  • 1 Chamberlain JJ, Rhinehart AS, Shaefer CF, Neuman A. Diagnosis and management of diabetes: synopsis of the 2016 American Diabetes Association Standards of Medical Care in Diabetes. Ann Intern Med 2016; 164: 542-552
  • 2 Seferovic PM, Petrie MC, Filippatos GS, Anker SD, Rosano G, Bauersachs J, Paulus WJ, Komajda M, Cosentino F, de Boer RA, Farmakis D, Doehner W, Lambrinou E, Lopatin Y, Piepoli MF, Theodorakis MJ, Wiggers H, Lekakis J, Mebazaa A, Mamas MA, Tschope C, Hoes AW, Seferovic JP, Logue J, McDonagh T, Riley JP, Milinkovic I, Polovina M, van Veldhuisen DJ, Lainscak M, Maggioni AP, Ruschitzka F, McMurray JJV. Type 2 diabetes mellitus and heart failure: a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 2018; 20: 853-872
  • 3 Yeo J, Kang Y, Cho S, Jung M. Effects of a multi-herbal extract on type 2 diabetes. Chin Med 2011; 1: 1-10
  • 4 Zimmet P, Alberti KGMM, Shaw J. Global and societal implications of the diabetes epidemic. Nature 2001; 414: 782-787
  • 5 Hermayer KL, Loftley AS, Reddy S, Narla SN, Epps NA, Zhu Y. Challenges of inpatient blood glucose monitoring: standards, methods, and devices to measure blood glucose. Curr Diabetes Rep 2015; 15: 1-10
  • 6 Uusitupa M, Khan TA, Viguiliouk E, Kahleova H, Rivellese AA, Hermansen K, Pfeiffer A, Thanopoulou A, Salas-Salvado J, Schwab U, Sievenpiper JL. Prevention of type 2 diabetes by lifestyle changes: a systematic review and meta-analysis. Nutrients 2019; 11: 2611
  • 7 Chen X, Yu J, Shi J. Management of diabetes mellitus with puerarin, a natural isoflavone from Pueraria lobata . Am J Chin Med 2018; 46: 1771-1789
  • 8 Liu C, Liu R, Fan H, Xiao X, Chen X, Xu H, Lin Y. Network pharmacology bridges traditional application and modern development of traditional Chinese medicine. Chin Herb Med 2015; 7: 3-17
  • 9 Guo DA, Bauer R, Robinson N. The therapeutic value of natural products derived from Chinese medicine – a systems based perspective. Eur J Integr Med 2014; 6: 617-620
  • 10 Zhang YY, Jiang HY, Liu M, Hu K, Wang WG, Du X, Li XN, Pu JX, Sun HD. Bioactive ent-kaurane diterpenoids from Isodon rubescens . Phytochemistry 2017; 143: 199-207
  • 11 Duan JL, Wu YL, Xu JG. Assessment of the bioactive compounds, antioxidant and antibacterial activities of Isodon rubescens as affected by drying methods. Nat Prod Res 2019; 33: 746-749
  • 12 Jin B, Guo J, Tang J, Tong Y, Ma Y, Chen T, Wang Y, Shen Y, Zhao Y, Lai C, Cui G, Huang L. An alternative splicing alters the product outcome of a class I terpene synthase in Isodon rubescens . Biochem Biophys Res Commun 2019; 512: 310-313
  • 13 Bai SP, Luo GS, Zhang XY, Liu W. An ent-kaurane diterpenoid from Isodon japonica var. glaucocalyx. Acta Crystallogr Sect E Struct Rep Online 2009; 65: o1898
  • 14 Feng C, Guo LQ, Yan FL, Cui JM, Di XM. 1α,6β,7β,11α,15β-Penta-hydr-oxy-7α,20-ep-oxy-ent-kaur-16-ene. Acta Crystallogr Sect E Struct Rep Online 2010; 66: o334
  • 15 Yan FL, Li P, Di XM, Feng C, Hou RJ. 6β-Acet-oxy-1α,7β,11β,15β-tetra-hydr-oxy-7α,20-ep-oxy-ent-kaur-16-ene. Acta Crystallogr Sect E Struct Rep Online 2010; 66: o295
  • 16 Yan FL, Zhan HQ, Feng C, Di XM. 15α,20β-Dihydr-oxy-6β-meth-oxy-6,7-seco-6,20-ep-oxy-1,7-olide-ent-kaur-16-ene. Acta Crystallogr Sect E Struct Rep Online 2010; 66: o930
  • 17 Westerhoff HV. Network-based pharmacology through systems biology. Drug Discov Today Technol 2015; 15: 15-16
  • 18 Zhao J, Yang J, Tian S, Zhang W. A survey of web resources and tools for the study of TCM network pharmacology. Quant Biol 2019; 7: 17-29
  • 19 Yang K, Zeng L, Ge J. Exploring the pharmacological mechanism of Danzhi Xiaoyao Powder on ER-positive breast cancer by a network pharmacology approach. Evid Based Complement Alternat Med 2018; 2018: 5059743
  • 20 Pang XC, Kang D, Fang JS, Zhao Y, Xu LJ, Lian WW, Liu AL, Du GH. Network pharmacology-based analysis of Chinese herbal Naodesheng formula for application to alzheimerʼs disease. Chin J Nat Med 2018; 16: 53-62
  • 21 Bi Y, Zhang L, Chen S, Ling Q. Antitumor mechanisms of Curcumae rhizoma based on network pharmacology. Evid Based Complement Alternat Med 2018; 2018: 1-9
  • 22 Zheng S, Jiang Y, Lu M, Gao B, Qiao X, Sun B, Zhang W, Xue D. Network pharmacological screening of herbal monomers that regulate apoptosis-associated genes in acute pancreatitis. Pancreas 2017; 46: 89-96
  • 23 Wang T, Wang X. Molecular structure, vibrational and 13C NMR spectra of two ent-kaurenes spirolactone type diterpenoids rabdosinate and rabdosin B: a combined experimental and density functional methods. Spectrochim Acta A Mol Biomol Spectrosc 2015; 135: 568-575
  • 24 Pelot KA, Hagelthorn LM, Addison JB, Zerbe P. Biosynthesis of the oxygenated diterpene nezukol in the medicinal plant Isodon rubescens is catalyzed by a pair of diterpene synthases. PLoS One 2017; 12: e0176507
  • 25 Han QB, Zhao AH, Zhang JX, Lu Y, Zhang LL, Zheng QT, Sun HD. Cytotoxic constituents of Isodon rubescens var. lushiensis . J Nat Prod 2003; 66: 1391-1394
  • 26 Ference BA, Robinson JG, Brook RD, Catapano AL, Chapman MJ, Neff DR, Voros S, Giugliano RP, Davey Smith G, Fazio S, Sabatine MS. Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. N Engl J Med 2016; 375: 2144-2153
  • 27 Glawe JD, Patrick DR, Huang M, Sharp CD, Barlow SC, Kevil CG. Genetic deficiency of Itgb2 or ItgaL prevents autoimmune diabetes through distinctly different mechanisms in NOD/LtJ mice. Diabetes 2009; 58: 1292-1301
  • 28 Tan H, Wang W, Yin X, Li Y, Yin R. Identification of a selective glucocorticoid receptor ligand for the treatment of chronic inflammation in type 2 diabetes mellitus. Exp Ther Med 2014; 8: 1111-1114
  • 29 Berstein LM, Boyarkina MP, Tsyrlina EV, Turkevich EA, Semiglazov VF. More favorable progesterone receptor phenotype of breast cancer in diabetics treated with metformin. Med Oncol 2011; 28: 1260-1263
  • 30 He J, Gao J, Xu M, Ren S, Stefanovic-Racic M, OʼDoherty RM, Xie W. PXR ablation alleviates diet-induced and genetic obesity and insulin resistance in mice. Diabetes 2013; 62: 1876-1887
  • 31 Lorenz R, Aleksic T, Wagner M, Adler G, Weber CK. The cAMP/Epac1/Rap1 pathway in pancreatic carcinoma. Pancreas 2008; 37: 102-103
  • 32 Wang SF, Aoki M, Nakashima Y, Shinozuka Y, Tanaka H, Taniwaki M, Hattori M, Minato N. Development of Notch-dependent T-cell leukemia by deregulated Rap1 signaling. Blood 2008; 111: 2878-2886
  • 33 Takahashi H, Shibasaki T, Park JH, Hidaka S, Takahashi T, Ono A, Song DK, Seino S. Role of Epac2A/Rap1 signaling in interplay between incretin and sulfonylurea in insulin secretion. Diabetes 2015; 64: 1262-1272
  • 34 Shukla S, Maclennan GT, Hartman DJ, Fu P, Resnick MI, Gupta S. Activation of PI3K-Akt signaling pathway promotes prostate cancer cell invasion. Int J Cancer 2007; 121: 1424-1432
  • 35 Scharenberg AM, El-Hillal O, Fruman DA, Beitz LO, Li Z, Lin S, Gout I, Cantley LC, Rawlings DJ, Kinet JP. Phosphatidylinositol-3,4,5-trisphosphate (PtdIns-3,4,5-P3)/Tec kinase-dependent calcium signaling pathway: a target for SHIP-mediated inhibitory signals. EMBO J 1998; 17: 1961-1972
  • 36 Li B, Cheung PY, Wang X, Tsao SW, Ling MT, Wong YC, Cheung AL. Id-1 activation of PI3K/Akt/NFkappaB signaling pathway and its significance in promoting survival of esophageal cancer cells. Carcinogenesis 2007; 28: 2313-2320
  • 37 Yang XS, Liu S, Liu YJ, Liu JW, Liu TJ, Wang XQ, Yan Q. Overexpression of fucosyltransferase IV promotes A431 cell proliferation through activating MAPK and PI3K/Akt signaling pathways. J Cell Physiol 2010; 225: 612-619
  • 38 Fallone F, Britton S, Nieto L, Salles B, Muller C. ATR controls cellular adaptation to hypoxia through positive regulation of hypoxia-inducible factor 1 (HIF-1) expression. Oncogene 2013; 32: 4387-4396
  • 39 Ding G, Liu HD, Liang HX, Ni RF, Ding ZY, Ni GY, Hua HW, Xu WG. HIF1-regulated ATRIP expression is required for hypoxia induced ATR activation. FEBS Lett 2013; 587: 930-935
  • 40 Xue W, Liu Y, Zhao J, Cai L, Li X, Feng W. Activation of HIF-1 by metallothionein contributes to cardiac protection in the diabetic heart. Am J Physiol Heart Circ Physiol 2012; 302: H2528-H2535 doi:10.1152/ajpheart.00850.2011
  • 41 OʼBoyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: an open chemical toolbox. J Cheminformatics 2011; 3: 33
  • 42 Jintao X, Ning H, Wenyan K, Chunyan L, Yun J, Mingxiang Z, Peng L. Hypoglycemic bioactive components and mechanism of Puerariae lobatae radix by network pharmacology. Chin Pharm J 2018; 53: 1748-1754
  • 43 Jintao X, Yongli S, Chunyan L, Huijie S. Network pharmacology-based prediction of the active ingredients, potential targets, and signaling pathways in compound Lian-Ge granules for treatment of diabetes. J Cell Biochem 2019; 120: 6431-6440
  • 44 Bi XR, Chen ZJ, Chen CC, Yin HM, Chen HY. Effect of metformin on insulin resistance of human umbilical vein endothelial cells (HUVECs). Chin J Lab Diagn 2019; 23: 684-687