Synthesis 2022; 54(03): 697-704
DOI: 10.1055/a-1652-3370
paper

Oxidation of α,β-Unsaturated Ketones by Organophotocatalysis Using Rhodamine 6G under Visible Light Irradiation: Insight into the Reaction Mechanism

Eito Yoshioka
,
Hiroki Takahashi
,
Hikari Wanibe
,
Yukina Hontani
,
Kouki Hatsuse
,
Remi Shimizu
,
Akira Kawashima
,
Shigeru Kohtani
,
Hideto Miyabe
This work was supported by a Japan Society for the Promotion of Science (JSPS) KAKENHI Grant-in-Aid for Scientific Research (C) (Grant Number 20K06954, to H.M.).


Abstract

The oxidative transformation of α,β-unsaturated ketones was investigated under visible-light-induced photocatalytic conditions using rhodamine 6G as an organophotocatalyst. In this organocatalysis, the mild co-oxidant bromotrichloromethane (BrCCl3) acts not only as a quencher toward the activated photocatalyst species, having reductant properties, but also as a brominating reagent for the intermediate radicals. This study shows that bromine atom transfer from BrCCl3 to intermediate radicals is a key step in the reaction mechanism of our oxidation method.

Supporting Information



Publication History

Received: 08 September 2021

Accepted after revision: 23 September 2021

Accepted Manuscript online:
23 September 2021

Article published online:
26 October 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For reviews, see:
    • 1a Mondal M, Bora U. RSC Adv. 2013; 3: 18716
    • 1b Sridharan V, Menéndez JC. Chem. Rev. 2010; 110: 3805
    • 1c Snider BB. Tetrahedron 2009; 65: 10738
    • 1d Nair V, Deepthi A. Tetrahedron 2009; 65: 10745
    • 1e Demir AS, Emrullahoglu M. Curr. Org. Synth. 2007; 4: 321
    • 1f Nair V, Deepthi A. Chem. Rev. 2007; 107: 1862
    • 1g Snider BB. Chem. Rev. 1996; 96: 339

      For recent examples of Mn(III)-promoted reactions, see:
    • 2a Liu Y, Li S.-J, Chen X.-L, Fan L.-L, Li X.-Y, Zhu S.-S, Qu L.-B, Yu B. Adv. Synth. Catal. 2020; 362: 688
    • 2b Ryzhakov D, Jarret M, Baltaze J.-P, Guillot R, Kouklovsky C, Vincent G. Org. Lett. 2019; 21: 4986
    • 2c Yang W.-C, Wei K, Sun X, Zhu J, Wu L. Org. Lett. 2018; 20: 3144
    • 2d Xiong Y.-S, Weng J, Lu G. Adv. Synth. Catal. 2018; 360: 1611
    • 2e Liu X, Chen X, Mohr JT. Org. Lett. 2016; 18: 3182

      For recent examples of CAN-promoted reactions, see:
    • 3a Yang Q, Yang Z, Tan Y, Zhao J, Sun Q, Zhang H.-Y, Zhang Y. Adv. Synth. Catal. 2019; 361: 1662
    • 3b Yang B, Hou S.-M, Ding S.-Y, Zhao X.-N, Gao Y, Wang X, Yang S.-D. Adv. Synth. Catal. 2018; 360: 4470
    • 3c Ryzhakov D, Jarret M, Guillot R, Kouklovsky C, Vincent G. Org. Lett. 2017; 19: 6336
    • 3d Zeng H, Pan P, Chen J, Gong H, Li C.-J. Eur. J. Org. Chem. 2017; 1070

      For recent reviews, see:
    • 4a Li Y, Pan G.-A, Luo M.-J, Li J.-H. Chem. Commun. 2020; 56: 6907
    • 4b Li Z.-L, Fang G.-C, Gu Q.-S, Liu X.-Y. Chem. Soc. Rev. 2020; 49: 32
    • 4c Grzybowski M, Sadowski B, Butenschön H, Gryko DT. Angew. Chem. Int. Ed. 2020; 59: 2998
    • 4d Sreedevi R, Saranya S, Rohit KR, Anilkumar G. Adv. Synth. Catal. 2019; 361: 2236
    • 4e Shalit H, Dyadyuk A, Pappo D. J. Org. Chem. 2019; 84: 1677
    • 4f Gualandi A, Mengozzi L, Cozzi PG. Asian J. Org. Chem. 2017; 6: 1160
    • 4g Chemler SR, Karyakarte SD, Khoder ZM. J. Org. Chem. 2017; 82: 11311

      For selected reviews, see:
    • 5a Glaser F, Kerzig C, Wenger OS. Angew. Chem. Int. Ed. 2020; 59: 10266
    • 5b Zhu C, Yue H, Chu L, Rueping M. Chem. Sci. 2020; 11: 4051
    • 5c Jiang C, Chen W, Zheng W.-H, Lu H. Org. Biomol. Chem. 2019; 17: 8673
    • 5d Boubertakh O, Goddard JP. Eur. J. Org. Chem. 2017; 2072
    • 5e Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
    • 5f Tucker JW, Stephenson CR. J. J. Org. Chem. 2012; 77: 1617
    • 5g Ischay MA, Yoon TP. Eur. J. Org. Chem. 2012; 3359

      For our studies, see:
    • 6a Yoshioka E, Kohtani S, Tanaka E, Miyabe H. Synlett 2013; 24: 1578
    • 6b Yoshioka E, Kohtani S, Tanaka E, Hata Y, Miyabe H. Tetrahedron 2015; 71: 773

      For selected reviews, see:
    • 7a Barham JP, König B. Angew. Chem. Int. Ed. 2020; 59: 11732
    • 7b Zilate B, Fischer C, Sparr C. Chem. Commun. 2020; 56: 1767
    • 7c Uygur M, Mancheño OG. Org. Biomol. Chem. 2019; 17: 5475
    • 7d Sharma S, Sharma A. Org. Biomol. Chem. 2019; 17: 4384
    • 7e Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 7f Fukuzumi S, Ohkubo K. Org. Biomol. Chem. 2014; 12: 6059
    • 7g Hari DP, König B. Chem. Commun. 2014; 50: 6688
    • 7h Ravelli D, Fagnoni M, Albini A. Chem. Soc. Rev. 2013; 42: 97

      For our studies, see:
    • 8a Yoshioka E, Kohtani S, Jichu T, Fukazawa T, Nagai T, Takemoto Y, Miyabe H. Synlett 2015; 26: 265
    • 8b Yoshioka E, Kohtani S, Jichu T, Fukazawa T, Nagai T, Kawashima A, Takemoto Y, Miyabe H. J. Org. Chem. 2016; 81: 7217
  • 9 Yoshioka E, Inoue M, Nagoshi Y, Kobayashi A, Mizobuchi R, Kawashima A, Kohtani S, Miyabe H. J. Org. Chem. 2018; 83: 8962

    • For early examples for rhodamine 6G, see:
    • 10a Graml A, Ghosh I, König B. J. Org. Chem. 2017; 82: 3552
    • 10b Meyer AU, Slanina T, Heckel A, König B. Chem. Eur. J. 2017; 23: 7900
  • 11 Gong X, Zhu C, Ye L.-W. Org. Biomol. Chem. 2020; 18: 1843
    • 12a Memarian HR, Hesami A, Nikpour F, Dopp D. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2001; 40: 662
    • 12b Bernd P. Eur. J. Org. Chem. 2005; 1919

      The α-brominated ketones 5a and 5b were assumed to be the syn-isomers, because the 1H and 13C NMR spectra of 5a and 5b are slightly different from the reported 1H and 13C NMR data of the anti-isomers; see:
    • 13a Zhou P, Cai Y, Zhong X, Luo W, Kang T, Li J, Liu X, Lin L, Feng X. ACS Catal. 2016; 6: 7778
    • 13b Sukanta B. Can. J. Chem. 2010; 88: 605
    • 13c Pirtsch M, Paria S, Matsuno T, Isobe H, Reiser O. Chem. Eur. J. 2012; 18: 7336
  • 14 Murakami M, Hayashi M, Ito Y. J. Org. Chem. 1994; 59: 7910
  • 15 NMR experiments, HMQC and HMBC, were conducted to determine the structure of 8 (see the Supporting Information).
  • 16 Tamura Y, Yakura T, Terashi H, Haruta J, Kita Y. Chem. Pharm. Bull. 1987; 35: 570
  • 17 The delocalized enolate K may be stabilized by an orbital-overlapping interaction between the pseudo-axial C–O bond and the C=C of the enolate moiety.
  • 18 Wińska K, Grudniewska A, Chojnacka A, Białońska A, Wawrzeńczyk C. Tetrahedron: Asymmetry 2010; 21: 670
  • 19 Giuliano RM, Jordan AD. Jr, Gauthier AD, Hoogsteen K. J. Org. Chem. 1993; 58: 4979
  • 20 Liang Y.-F, Song S, Ai L, Li X, Jiao N. Green Chem. 2016; 18: 6462