Synthesis 2022; 54(07): 1803-1816
DOI: 10.1055/a-1700-3115
paper

An Experimental and Theoretical Study of the 1,3-Dipolar Cyclo­addition of Alloxan-Derived Azomethine Ylides to Cyclopropenes

Alexander S. Filatov
a   Saint-Petersburg State University, Universitetskaya nab. 7/9, 199034, St. Petersburg, Russian Federation
,
Stanislav I. Selivanov
a   Saint-Petersburg State University, Universitetskaya nab. 7/9, 199034, St. Petersburg, Russian Federation
,
Stanislav V. Shmakov
b   Saint Petersburg National Research Academic University of the Russian Academy of Sciences, ul. Khlopina 8/3, 194021, St. Petersburg, Russian Federation
,
Anna G. Larina
a   Saint-Petersburg State University, Universitetskaya nab. 7/9, 199034, St. Petersburg, Russian Federation
,
Vitali M. Boitsov
b   Saint Petersburg National Research Academic University of the Russian Academy of Sciences, ul. Khlopina 8/3, 194021, St. Petersburg, Russian Federation
,
Alexander V. Stepakov
a   Saint-Petersburg State University, Universitetskaya nab. 7/9, 199034, St. Petersburg, Russian Federation
c   Saint-Petersburg State Institute of Technology, Moskovskii pr. 26, 190013, St. Petersburg, Russian Federation
› Author Affiliations
The authors are grateful for the financial support from the Russian Science Foundation (RSF 20-15-00332).


Abstract

A diastereoselective synthesis of biologically interesting spirobarbiturates has been achieved via [3+2] cycloaddition of alloxan-derived azomethine ylides to 3-R-1,2-diphenylcyclopropenes. With this approach, a range of spirobarbiturate-3-azabicyclo[3.1.0]hexanes and spirobarbiturate-cyclopropa[a]pyrrolizines were obtained in moderate to good yields with excellent diastereoselectivities. DFT calculations (M11 density functional theory) were carried out to shed light on the molecular mechanism of 1,3-dipolar cycloaddition of alloxan-derived azomethine ylides to cyclopropenes. The cytotoxic activity of some obtained compounds against human erythroleukemia (K562) cell line was evaluated in vitro by MTS-assay.

Supporting Information



Publication History

Received: 15 October 2021

Accepted after revision: 17 November 2021

Accepted Manuscript online:
17 November 2021

Article published online:
16 December 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a López-Muñoz F, Ucha-Udabe R, Alamo C. Neuropsychiatr. Dis. Treat. 2005; 1: 329
    • 1b Bojarski JT, Mokrosz JL, Bartoń HJ, Paluchowska VM. Adv. Heterocycl. Chem. 1985; 38: 229
    • 1c Mahmudov KT, Kopylovich MN, Maharramov AM, Kurbanova MM, Gurbanov AV, Pombeiro AJ. L. Coord. Chem. Rev. 2014; 265: 1
    • 1d Ziarani GM, Alealia F, Lashgari N. RSC Adv. 2016; 6: 50895
    • 1e Segovia C, Lebrêne A, Levacher V, Oudeyer S, Brière J.-F. Catalysts 2019; 9: 131
  • 2 Szostak M, Sautier B, Spain M, Behlendorf M, Procter DJ. Angew. Chem. Int. Ed. 2013; 52: 12559
    • 3a Johns MW. Drugs 1975; 9: 448
    • 3b Smith MC, Riskin BJ. Drugs 1991; 42: 365
    • 3c Naguib FN. M, Levesque DL, Wang EC, Panzica PP, El Kouni MH. Biochem. Pharmacol. 1993; 46: 1273
    • 3d Sudha S, Lakshmana MK, Pradhan N. Pharmacol., Biochem. Behav. 1996; 54: 633
    • 3e Brunner H, Ittner KP, Lunz D, Schmatloch S, Schmidt T, Zabel M. Eur. J. Org. Chem. 2003; 855
    • 3f Lyons KE, Pahwa R. CNS Drugs 2008; 22: 1037
    • 3g Abraham DJ, Rotella DP. Burger’s Medicinal Chemistry, Drug Discovery and Development. Wiley; Hoboken: 2010
  • 4 Oliva A, De Cillis G, Grams F, Livi V, Zimmermann G, Menta E, Krell H.-W. US Pat 6335332 B1, 2002
    • 5a Maquoi E, Sounni NE, Devy L, Olivier F, Frankenne F, Krell H.-W, Grams F, Foidart J.-M, Noël A. Clin. Cancer Res. 2004; 10: 4038
    • 5b Bhaskarachar RK, Revanasiddappa VG, Hegde S, Balakrishna JP, Reddy SY. Med. Chem. Res. 2015; 24: 3516
  • 6 Naguib FN. M, Levesque DL, Wang EC, Panzica PP, El Kouni MH. Biochem. Pharmacol. 1993; 4: 1273
  • 7 King SB, Stratford E, Craig C, Fifer EK. Pharm. Res. 1995; 12: 1240
  • 8 Galati EM, Monforte MT, Miceli N, Raneri E. Farmaco 2001; 56: 459
  • 9 Fraser W, Suckling CJ, Wood HC. S. J. Chem. Soc., Perkin Trans. 1 1990; 3137
  • 10 Kim S.-H, Pudzianowski AT, Leavitt KJ, Barbosa J, McDonnell PA, Metzler WJ, Rankin BM, Liu R, Vaccaro W, Pitts W. Bioorg. Med. Chem. Lett. 2005; 15: 1101
  • 11 Taylor SN, Marrazzo J, Batteiger BE, Hook EW. III, Seña AC, Long J, Wierzbicki MR, Kwak H, Johnson SM, Lawrence K, Mueller J. N. Engl. J. Med. 2018; 379: 1835
  • 12 Damião Gouveia AC, Unemo M, Jensen JS. J. Antimicrob. Chemother. 2018; 73: 1291
    • 13a Huo M, Zhou J, Bai L, Xu Q, Zhou Z, Zhou H, Liang G. Tetrahedron 2019; 75: 130752
    • 13b Borisova YG, Raskil’dina GZ, Zlotskii SS. Dokl. Chem. 2017; 476: 201
    • 13c Elinson MN, Vereshchagin AN, Korshunov AD, Ryzhkov FV, Egorov MP. Heterocycl. Commun. 2017; 23: 85
    • 13d Pesyan EK. N. N, Şahin E. J. Chin. Chem. Soc. 2015; 62: 959
    • 13e Jiang B, Cao L.-J, Tu S.-J, Zheng W.-R, Yu H.-Z. J. Comb. Chem. 2009; 11: 612
    • 13f Renard A, Lhomme J, Kotera M. J. Org. Chem. 2002; 67: 1302
    • 13g Lomlim L, Einsiedel J, Heinemann FW, Meyer K, Gmeiner P. J. Org. Chem. 2008; 73: 3608
  • 14 Gao X, Li Z, Yang W, Liu Y, Chen W, Zhang C, Zheng L, Guo H. Org. Biomol. Chem. 2017; 15: 5298
    • 15a Liu H, Liu Y, Yuan C, Wang G.-P, Zhu S.-F, Wu Y, Wang B, Sun Z, Xiao Y, Zhou Q.-L, Guo H. Org. Lett. 2016; 18: 1302
    • 15b Zhao H.-W, Feng N.-N, Guo J.-M, Du J, Ding W.-Q, Wang L.-R, Song X.-Q. J. Org. Chem. 2018; 83: 9291
  • 16 Gao X, Zhu D, Chen Y, Deng H, Jiang F, Wang W, Wu Y, Guo H. Org. Lett. 2020; 22: 7158
  • 17 Kotha S, Sreevani G. Synthesis 2018; 50: 4883
  • 18 Soeiro PF, Serrano JL, Paixão JA, Boto RE. F, Silvestre S, Almeida P. Synthesis 2020; 52: 2065
  • 19 Song X, Chang J, Zhu Y, Zhao S, Zhang M. Synthesis 2019; 51: 899
  • 20 Filatov AS, Knyazev NA, Molchanov AP, Panikorovsky TL, Kostikov RR, Larina AG, Boitsov VM, Stepakov AV. J. Org. Chem. 2017; 82: 959
  • 21 Filatov AS, Knyazev NA, Ryazantsev MN, Suslonov VV, Larina AG, Molchanov AP, Kostikov RR, Boitsov VM, Stepakov AV. Org. Chem. Front. 2018; 5: 595
  • 22 Filatov AS, Knyazev NA, Shmakov SV, Bogdanov AA, Ryazantsev MN, Shtyrov AA, Starova GL, Molchanov AP, Larina AG, Boitsov VM, Stepakov AV. Synthesis 2019; 51: 713
  • 23 Filatov AS, Wang S, Khoroshilova OV, Lozovskiy SV, Larina AG, Boitsov VM, Stepakov AV. J. Org. Chem. 2019; 84: 7017
  • 24 Wang S, Filatov AS, Lozovskiy SV, Shmakov SV, Khoroshilova OV, Larina AG, Selivanov SI, Boitsov VM, Stepakov AV. Synthesis 2021; 53: 2114
  • 25 Aly MF, El-Nagger GM, El-Emary TI, Grigg R, Metwally SA. M, Sivagnanam S. Tetrahedron 1994; 50: 895
  • 26 Boitsov VM, Vyazmin SY, Stepakov AV. Targets Heterocycl. Syst. 2019; 23: 261
  • 27 CCDC 2104926 (6o), 2105081 (6p), and 2104998 (6r) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
  • 28 Aly MF, Grigg R, Thianpatanagul S, Sridharan V. J. Chem. Soc., Perkin Trans. 1 1988; 949
  • 29 Knyazev NA, Shmakov SV, Pechkovskaya SA, Filatov AS, Stepakov AV, Boitsov VM, Filatova NA. Int. J. Mol. Sci. 2021; 22: 8264
  • 30 Breslow R, Chang HW. J. Am. Chem. Soc. 1961; 83: 2367
  • 31 Padwa A, Blacklock TJ, Getman D, Hatanaka N, Loza R. J. Org. Chem. 1978; 43: 1481
  • 32 Gilbertson RD, Weakley TJ. R, Haley MM. J. Org. Chem. 2000; 65: 1422
  • 33 D’yakonov IA, Komendantov MI, Gokhmanova I, Kostikov RR. Russ. J. Gen. Chem. 1958; 29: 3848
  • 34 White EH, Winter RE. K, Graeve R, Zirngibl U, Friend EW, Maskill H, Mende U, Kreiling G, Reisenauer HP, Maier G. Chem. Ber. 1981; 114: 3906
  • 35 Li H, Praveen Rao PN, Habeeb AG, Knaus EE. Drug Dev. Res. 2002; 57: 6
  • 36 Henseling K.-O, Weyerstahl P. Chem. Ber. 1975; 108: 2803
  • 37 Domnin IN, Zhuravleva EF, Pronina NV. Russ. J. Org. Chem. 1978; 14: 2323
  • 38 Rubin M, Gevorgyan V. Synthesis 2004; 796
  • 39 Peveratti R, Truhlar DG. J. Phys. Chem. Lett. 2011; 2: 2810
  • 40 Dunning TH. J. Chem. Phys. 1989; 90: 1007
  • 41 Cossi M, Rega N, Scalmani G, Barone V. J. Comput. Chem. 2003; 24: 669
  • 42 Schlegel HB. J. Comput. Chem. 1982; 3: 214
  • 43 Fukui KJ. J. Phys. Chem. 1970; 74: 4161
  • 44 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ő, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision C.01 . Gaussian; Wallingford CT: 2013