Synthesis 2023; 55(05): 846-856
DOI: 10.1055/a-1960-0042
paper

I2-DMSO-Promoted Direct Synthesis of Substituted Imidazoles from Styrenes and Benzylamines under Solvent-Free Conditions

Swadhapriya Bhukta
,
,
Rambabu Dandela thanks DST-SERB for Ramanujan fellowship (SB/S2/RJN-075/2016), Core research grant (CRG/2018/000782) and ICT-IOC start-up grant.


Abstract

A novel and efficient method has been developed for the direct synthesis of substituted imidazoles through the reaction of styrenes and benzylamines with the assistance of I2-DMSO concerted system. The reactions proceed efficiently under open air and solvent-free conditions to afford a wide variety of substituted imidazoles in good yields. A productive large-scale synthesis also has been performed to target highly substituted heterocyclic motifs. The present protocol offers metal- and solvent-free process, mild conditions, easily accessible reactants, and operational simplicity to achieve an assembly of substituted N-heterocyclic compounds.

Supporting Information



Publication History

Received: 06 September 2022

Accepted after revision: 12 October 2022

Accepted Manuscript online:
12 October 2022

Article published online:
16 November 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Sato N. In Comprehensive Heterocyclic Chemistry II . Katritzky AR, Rees CW, Boulton AJ. Elsevier; Oxford: 1996
    • 1b Hili R, Yudin AK. Nat. Chem. Biol. 2006; 2: 284
    • 2a Singh R, Sathish E, Gupta AK, Goyal S. Tetrahedron 2021; 100: 132474
    • 2b Kattamuri PV, Yin J, Siriwongsup S, Kwon DH, Ess DH, Li Q, Kurti L. J. Am. Chem. Soc. 2017; 139: 11184
    • 2c Munnuri S, Anugu RR, Falck JR. Org. Lett. 2019; 21: 1926
    • 2d Bariwal J, Van der Eycken E. Chem. Soc. Rev. 2013; 42: 9283
    • 2e Shin K, Kim H, Chang S. Acc. Chem. Res. 2015; 48: 1040
    • 3a Jin Z. Nat. Prod. Rep. 2009; 26: 382
    • 3b Forte B, Malgesini B, Piutti C, Quartieri F, Scolaro A, Papeo G. Mar. Drugs 2009; 7: 705
    • 3c Midoux P, Pichon C, Yaouanc JJ, Jaffrès PA. Br. J. Pharmacol. 2009; 157: 166
    • 4a Cho HJ, Gee HY, Baek KH, Ko SK, Park JM, Lee H, Shin I. J. Am. Chem. Soc. 2011; 133: 20267
    • 4b Bellina F, Cauteruccio S, Rossi R. Tetrahedron 2007; 63: 4571
    • 4c Wang G, Peng Z, Wang J, Li J, Li X. Bioorg. Med. Chem. Lett. 2016; 26: 5719
    • 4d Zhang L, Peng XM, Damu GL, Geng RX, Zhou CH. Med. Res. Rev. 2014;  34: 340
    • 4e Ali I, Lone MN, Aboul-Enein HY. MedChemComm 2017; 8: 1742
    • 4f Laufer SA, Zimmermann W, Ruff KJ. J. Med. Chem. 2004; 47: 6311
    • 5a Negi A, Alex JM, Amrutkar SM, Baviskar AT, Joshi G, Singh S, Kumar R. Bioorg. Med. Chem. 2015; 23: 5654
    • 5b Khabnadideh S, Rezaei Z, Khalafi-Nezhad A, Bahrinajafi R, Mohamadi R, Farrokhroz AA. Bioorg. Med. Chem. Lett. 2003; 13: 2863
    • 5c Schemeth D, Kappacher C, Rainer M, Thalinger R, Bonn GK. Talanta 2016; 153: 177
    • 5d Wen SQ, Jeyakkumar P, Avula SR, Zhang L, Zhou CH. Bioorg. Med. Chem. Lett. 2016; 26: 2768
    • 5e Navarrete-Vázquez G, Hidalgo-Figueroa S, Torres-Piedra M, Vergara-Galicia J, Rivera-Leyva JC, Estrada-Soto S, Ibarra-Barajas M. Bioorg. Med. Chem. 2010; 18: 3985
    • 6a Zeng J, Bai Y, Cai S, Ma J, Liu XW. Chem. Commun. 2011; 47: 12855
    • 6b Yamagishi M, Okazaki J, Nishigai K, Hata T, Urabe H. Org. Lett. 2012; 14: 34
    • 6c Ueda S, Su M, Buchwald SL. J. Am. Chem. Soc. 2012; 134: 700
    • 6d Sarkar SM, Uozumi Y, Yamada YM. Angew. Chem. Int. Ed. 2011; 50: 9437
    • 7a Li Y, Giulionatti M, Houghten RA. Org. Lett. 2010; 12: 2250
    • 7b Zhang Z, Xie F, Jia J, Zhang W. J. Am. Chem. Soc. 2010; 132: 15939
    • 7c Byler KG, Li Y, Houghten RA, Martinez-Mayorga K. Org. Biomol. Chem. 2013; 11: 2979
  • 8 Vallee BL, Auld DS. Biochemistry 1990; 29: 5647
    • 10a Eshetu GG, Diemant T, Grugeon S, Behm RJ, Laruelle S, Armand M, Passerini S. ACS Appl Mater. Interfaces 2016; 8: 16087
    • 10b Rong H, Xu M, Zhu Y, Xie B, Lin H, Liao Y, Li W. J. Power Sources 2016; 332: 312
  • 11 Ouakki M, Galai M, Cherkaoui M. J. Mol. Liq. 2022; 345: 117815
    • 12a Mallakpour S, Rafiee Z. J. Polym. Environ. 2011; 19: 447
    • 12b De Souza RF, Padilha JC, Gonçalves RS, Dupont J. Electrochem. Commun. 2003; 5: 728
    • 12c Dupont J, de Souza RF, Suarez PA. Chem. Rev. 2002; 102: 3667
    • 12d Yin K, Zhang Z, Yang L, Hirano SI. J. Power Sources 2014; 258: 150
    • 12e Binnemans K. Chem. Rev. 2005; 105: 4148
    • 13a Japp FR, Robinson HH. Ber. Dtsch. Chem. Ges. 1882; 15: 1268
    • 13b Radziszewski B. Ber. Dtsch. Chem. Ges. 1882; 15: 1493
    • 13c Bredereck H, Theilig G. Chem. Ber. 1953; 86: 88
  • 15 Zhong YL, Lee J, Reamer RA, Askin D. Org. Lett. 2004; 6: 929
    • 16a Bontemps S, Quesnel JS, Worrall K, Arndtsen BA. Angew. Chem. Int. Ed. 2011; 50: 8948
    • 16b Giles RL, Sullivan JD, Steiner AM, Looper RE. Angew. Chem. Int. Ed. 2009; 48: 3116
  • 17 García JJ, Zerecero-Silva P, Reyes-Rios G, Crestani MG, Arévalo A, Barrios-Francisco R. Chem. Commun. 2011; 47: 10121
  • 18 Petit S, Fruit C, Bischoff L. Org. Lett. 2010; 12: 4928
  • 19 Lygin AV, de Meijere A. Angew. Chem. Int. Ed. 2010; 49: 9094
  • 20 Asressu KH, Chan CK, Wang CC. RSC Adv. 2021; 11: 28061
  • 21 Rajaguru K, Suresh R, Mariappan A, Muthusubramanian S, Bhuvanesh N. Org. Lett. 2014; 16: 744
    • 22a Liu X, Wang D, Chen B. Tetrahedron 2013; 69: 9417
    • 22b Wu P, Qu J, Li Y, Guo X, Tang D, Meng X, Chen B. Adv. Synth. Catal. 2015; 357: 3868
    • 22c Wang C, Lai J, Chen C, Li X, Cao H. J. Org. Chem. 2017; 82: 13740
    • 22d Pardeshi SD, Sathe PA, Vadagaonkar KS, Melone L, Chaskar AC. Synthesis 2018; 50: 361
    • 22e Zhu Y, Li C, Zhang J, She M, Sun W, Wan K, Li J. Org. Lett. 2015; 17: 3872
    • 23a Xiong J, Wei X, Liu ZM, Ding MW. J. Org. Chem. 2017; 82: 13735
    • 23b Xu W, Wang G, Sun N, Liu Y. Org. Lett. 2017; 19: 3307
    • 23c Shekouhy M, Moaddeli A, Khalafi-Nezhad A. J. Porous Mater. 2018; 25: 75
    • 23d Das UK, Shimon LJ, Milstein D. Chem. Commun. 2017; 53: 13133
    • 23e Wang Y, Li J, He Y, Xie Y, Wang H, Pan Y. Adv. Synth. Catal. 2015; 357: 3229
    • 23f Nie YB, Wang L, Ding MW. J. Org. Chem. 2012; 77: 696
    • 23g Horneff T, Chuprakov S, Chernyak N, Gevorgyan V, Fokin VV. J. Am. Chem. Soc. 2008; 130: 14972
    • 23h Tang D, Wu P, Liu X, Chen YX, Guo SB, Chen WL, Chen BH. J. Org. Chem. 2013; 78: 2746
    • 23i Yamauchi T, Shibahara F, Murai T. J. Org. Chem. 2014; 79: 7185
    • 24a Huang H, Ji X, Wu W, Jiang H. Adv. Synth. Catal. 2013; 355: 170
    • 24b Chen X, Wang Z, Huang H, Deng GJ. Adv. Synth. Catal. 2018; 360: 4017
    • 24c Cai ZJ, Wang SY, Ji SJ. Org. Lett. 2012; 14: 6068
    • 24d Alanthadka A, Elango SD, Thangavel P, Subbiah N, Vellaisamy S, Chockalingam UM. Catal. Commun. 2019; 125: 26
    • 24e Yang Z, Zhang J, Hu L, Li A, Li L, Liu K, Zhou C. J. Org. Chem. 2020; 85: 5952
  • 25 Xiang L, Niu Y, Pang X, Yang X, Yan R. Chem. Commun. 2015; 51: 6598
  • 26 Cao J, Zhou X, Ma H, Shi C, Huang G. RSC Adv. 2016; 6: 57232
    • 27a Chen H, Chiba S. Org. Biomol. Chem. 2014; 12: 42
    • 27b Li J, Zhang P, Jiang M, Yang H, Zhao Y, Fu H. Org. Lett. 2017; 19: 1994
    • 28a Bhukta S, Chatterjee R, Dandela R. Org. Biomol. Chem. 2022; 20: 3907
    • 28b Pal S, Chatterjee R, Santra S, Zyryanov GV, Majee A. Adv. Synth. Catal. 2021; 363: 5300
    • 28c Chatterjee R, Santra S, Zyryanov GV, Majee A. J. Heterocycl. Chem. 2020; 57: 1863
    • 28d Mahato S, Santra S, Chatterjee R, Zyryanov GV, Hajra A, Majee A. Green Chem. 2017; 19: 3282
    • 28e Chatterjee R, Santra S, Zyryanov GV, Majee A. Synthesis 2019; 51: 2371
    • 28f Sarkar S, Chatterjee R, Mukherjee A, Mukherjee D, Mandal NC, Mahato S, Santra S, Zyryanov GV, Majee A. ACS Sustain. Chem. Eng. 2021; 9: 5557
    • 29a Azeredo JB, Godoi M, Martins GM, Silveira CC, Braga AL. J. Org. Chem. 2014; 9: 4125
    • 29b Vieira AA, Azeredo JB, Godoi M, Santi C, da Silva EN. Jr, Braga AL. J. Org. Chem. 2015; 80: 2120
    • 29c Bettanin L, Saba S, Galetto FZ, Mike GA, Rafique J, Braga AL. Tetrahedron Lett. 2017; 58: 4713
    • 29d Rafique J, Saba S, Rosario AR, Braga AL. Chem. Eur. J. 2016; 22: 11854
    • 29e Reddy M. R.; Rao N. N.; Ramakrishna K.; Meshram H. M. Tetrahedron Lett. 2014, 55, 1898.
    • 29f Silva LT, Azeredo JB, Saba S, Rafique J, Bortoluzzi AJ, Braga AL. Eur. J. Org. Chem. 2017; 4740
    • 29g Gaikwad S, Kamble D, Lokhande P. Tetrahedron Lett. 2018; 59: 2387
    • 29h Gaikwad SV, Nadimetla DN, Kobaisi MA, Devkate M, Joshi R, Shinde RG, Lokhande PD. ChemistrySelect 2019; 4: 10054
  • 30 CCDC number 2168853 (3aa) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.
  • 31 Subhashini NJ. P, Kumar EP, Gurrapu N, Yerragunta V. J. Mol. Struct. 2019; 1180: 618
    • 32a Hahn MG, Lampe T, El Sheikh S, Griebenow N, Woltering E, Schlemmer KH, Stasch JP. J. Med. Chem. 2021; 64: 5323
    • 32b Bellina F, Cauteruccio S, Di Fiore A, Marchetti C, Rossi R. Tetrahedron 2008; 64: 6060
  • 33 Simmons JT, Allen JR, Morris DR, Clark RJ, Levenson CW, Davidson MW, Zhu L. Inorg. Chem. 2013; 52: 5838
  • 34 Liang L, Astruc D. Coord. Chem. Rev. 2011; 255: 2933
  • 35 Kim J, Oh K. Adv. Synth. Catal. 2020; 362: 3576
  • 36 Kalmode HP, Vadagaonkar KS, Chaskar AC. Synthesis 2015; 47: 429
  • 37 Samanta S, Roy D, Khamarui S, Maiti DK. Chem. Commun. 2014; 50: 2477
  • 38 Ali MA. E. A. A, Abu-Dief AM. Tetrahedron 2015; 71: 2579