RSS-Feed abonnieren
DOI: 10.1055/a-2085-5256
Asymmetric Transfer Hydrogenation of Heterocyclic Compounds in Continuous Flow Using an Immobilized Chiral Phosphoric Acid as the Catalyst
Autor*innen
These studies have been supported by the National Science Foundation (NSF) (Grant No. CHE-1955069).

This manuscript is dedicated to Professor David A. Evans.
Abstract
This manuscript describes transfer hydrogenation of bicyclic nitrogen-containing heterocyclic compounds using the immobilized chiral phosphoric acid catalyst (R)-PS-AdTRIP in batch and continuous flow. A significant improvement in enantioselectivities is achieved in continuous flow with a fluidized bed reactor packed with (R)-PS-AdTRIP when the flow rate is increased from 0.2 mL/min to 2.0–2.5 mL/min. The optimized continuous flow conditions consistently provide 4–6% ee higher selectivity than transfer hydrogenation in batch with 2 mol% of (R)-PS-AdTRIP, and are used to generate multiple chiral products with the same fluidized bed reactor.
Key words
transfer hydrogenation - chiral phosphoric acid - continuous flow - enantioselectivity - heterocyclesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2085-5256.
- Supporting Information (PDF) (opens in new window)
Publikationsverlauf
Eingereicht: 11. März 2023
Angenommen nach Revision: 03. Mai 2023
Accepted Manuscript online:
03. Mai 2023
Artikel online veröffentlicht:
29. Juni 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Taylor AP, Robinson RP, Fobian YM, Blakemore DC, Jones LH, Fadeyi O. Org. Biomol. Chem. 2016; 14: 6611
- 1b Heravi MM, Zadsirjan V. RSC Adv. 2020; 10: 44247
- 1c Vitaku E, Smith DT, Njardarson J. J. Med. Chem. 2014; 57: 10257
- 1d Kerru N, Gummidi L, Maddila S, Gangu KK, Jonnalagadda SB. Molecules 2020; 25: 1909
- 2a Flick AC, Leverett CA, Ding HX, McInturff EL, Fink SJ, Mahapatra S, Carney DW, Lindsey EA, DeForest JC, France SP, Berritt S, Bigi-Botterill SV, Gibson TS, Watson RB, Liu Y, O’Donnell CJ. J. Med. Chem. 2022; 65: 9607
- 2b Flick AC, Leverett CA, Ding HX, McInturff EL, Fink SJ, Mahapatra S, Carney DW, Lindsey EA, DeForest JC, France SP, Berritt S, Bigi-Botterill SV, Gibson TS, Liu Y, O’Donnell CJ. J. Med. Chem. 2021; 64: 3607
- 3a Yu J, Zhou Y, Chen DF, Gong LZ. Pure Appl. Chem. 2014; 86: 1217
- 3b Vinogradov MG, Turova OV, Zlotin SG. Org. Biomol. Chem. 2019; 17: 3670
- 3c Zhang Y.-C, Jiang F, Shi F. Acc. Chem. Res. 2020; 53: 425
- 3d Magriotis PA. RSC Med. Chem. 2020; 11: 745
- 4a Rueping M, Theissmann T, Antonchick AP. Synlett 2006; 1071
- 4b Rueping M, Antonchick AP, Theissmann T. Angew. Chem. Int. Ed. 2006; 45: 3683
- 4c Rueping M, Tato F, Schoepke FR. Chem. Eur. J. 2010; 16: 2688
- 4d Rueping M, Merino E, Koenigs RM. Adv. Synth. Catal. 2010; 352: 2629
- 5a Pálvölgyi ÁM, Scharinger F, Schnürch M, Bica-Schröder K. Eur. J. Org. Chem. 2021; 5367
- 5b Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2014; 114: 9047
- 5c Phillips AM. F, Pombeiro AJ. L. Catalysts 2023; 13: 419
- 5d Zheng C, You SL. Chem. Soc. Rev. 2012; 41: 2498
- 6 Rueping M, Sugiono E, Steck A, Theissmann T. Adv. Synth. Catal. 2010; 352: 281
- 7 Bartoszek M, Beller M, Deutsch J, Klawonn M, Kockritz A, Nemati N, Pews-Davtyan A. Tetrahedron 2008; 64: 1316
- 8a Bleschke C, Schmidt J, Kundu DS, Blechert S, Thomas A. Adv. Synth. Catal. 2011; 353: 3101
- 8b Kundu DS, Schmidt J, Bleschke C, Thomas A, Blechert S. Angew. Chem. Int. Ed. 2012; 51: 5456
- 9a Osorio-Planes L, Rodriguez-Escrih C, Pericas MA. Chem. Eur. J. 2014; 20: 2367
- 9b Clot-Almenara L, Rodriguez-Escrich C, Osorio-Planes L, Pericas MA. ACS Catal. 2016; 6: 7642
- 9c Lai J, Fianchini M, Pericas MA. ACS Catal. 2020; 10: 14971
- 9d Chaudhari MB, Gupta P, Llanes P, Pericas MA. Adv. Synth. Cat. 2023; 365: 527
- 10 Li S, Zhang J, Chen S, Ma X. J. Catal. 2022; 416: 139
- 11a Chen X, Jiang H, Li X, Hou B, Gong W, Wu X, Han X, Zheng F, Liu Y, Jiang J, Cui Y. Angew. Chem. Int. Ed. 2019; 58: 14748
- 11b Chen X, Qiao Z, Hou B, Jiang H, Gong W, Dong J, Li H.-Y, Cui Y, Liu Y. Nano Res. 2021; 14: 466
- 12a Rodriguez-Escrich C, Pericas MA. Eur. J. Org. Chem. 2015; 6: 1173
- 12b Rodriguez-Escrich C, Pericas MA. Chem. Rec. 2018; 19: 1872
- 13 Wang S, Zhelavskyi O, Lee J, Argüelles AJ, Khomutnyk YY, Mensah E, Guo H, Hourani R, Zimmerman PM, Nagorny P. J. Am. Chem. Soc. 2021; 143: 18592
- 14a Hoffmann S, Seayad AM, List B. Angew. Chem. Int. Ed. 2005; 44: 7424
- 14b Adair G, Mukherjee S, List B. Aldrichimica Acta 2008; 41: 31
- 15a Jiao P, Nakashima D, Yamamoto H. Angew. Chem. Int. Ed. 2008; 47: 2411
- 15b Mensah E, Camasso N, Kaplan W, Nagorny P. Angew. Chem. Int. Ed. 2013; 52: 13939
- 16a Ouellet SG, Tuttle JB, MacMillan DW. C. J. Am. Chem. Soc. 2005; 127: 32
- 16b Ouellet SG, Walji AM, MacMillan DW. C. Acc. Chem. Res. 2007; 40: 1327
- 17 Zhu C, Akiyama T. Org. Lett. 2009; 11: 4180
- 18 Gao B, Meng W, Feng X, Du H. Org. Lett. 2022; 24: 3955
- 19a Chen Q.-A, Wang D.-S, Zhou Y.-G, Duan Y, Fan H.-J, Yang Y, Zhang Z. J. Am. Chem. Soc. 2011; 133: 6126
- 19b Saito K, Shibata Y, Yamanaka M, Akiyama T. J. Am. Chem. Soc. 2013; 135: 11740
- 20 Chen Q, Gao K, Duan Y, Ye Z, Shi L, Yang Y, Zhou Y. J. Am. Chem. Soc. 2012; 134: 2442
- 21 Sun S, Nagorny P. Chem. Commun. 2020; 56: 8432
- 22 Saito K, Miyashita H, Akiyama T. Chem. Commun. 2015; 51: 16648
- 23 Han ZY, Xiao H, Chen XH, Gong LZ. J. Am. Chem. Soc. 2009; 131: 9182
- 24 Zhao ZB, Wang J, Zhu ZH, Chen MW, Zhou YG. Org. Lett. 2021; 23: 9112
- 25 Qin J, Chen F, He YM, Fan QH. Org. Chem. Front. 2014; 1: 952