Subscribe to RSS
DOI: 10.1055/a-2130-7503
Biomechanical Analysis of Tomographically Regular Keratoconus Fellow Eyes Using Corvis ST
Article in several languages: deutsch | English
Abstract
Background Keratoconus is a bilateral, yet asymmetric disease. In rare cases, the second eye may show no signs of tomographic changes. The purpose of this study was to analyze the biomechanical characteristics in tomographically regular keratoconus fellow eyes.
Materials and Methods This retrospective, consecutive case series analyzed 916 eyes of 458 patients who presented to our keratoconus clinic between November 2020 and October 2022. Primary outcome measures included best-corrected visual acuity (BCVA), tomographic Scheimpflug analysis using Pentacam AXL (Oculus, Wetzlar, Germany), and biomechanical assessment using Corvis ST (Oculus, Wetzlar, Germany). Tomographic changes were assessed via analysis of the anterior and posterior curvature, K-max, thinnest corneal thickness (TCT), the Belin/Ambrosio Deviation Display (BAD-D), and the ABCD-Grading. Biomechanical changes were analyzed using Corvis Biomechanical Index (CBI) and Tomographic Biomechanical Index (TBI).
Results Of 916 eyes, 34 tomographically regular fellow eyes (7.4%) were identified and included in the analysis. Overall, the mean BCVA was − 0.02 ± 0.13 logMAR. Tomographic analysis showed mean K-max of 43.87 ± 1.21 D, mean TCT of 532 ± 23 µm, and mean BAD-D of 1.02 ± 0.43. Biomechanical analysis demonstrated mean CBI of 0.28 ± 0.26 and mean TBI of 0.34 ± 0.30. While normal CBI-values were observed in 16 (47%) of 34 eyes, only 13 eyes (38%) showed a regular TBI and only 7 eyes (21%) showed regular TBI and CBI. The sensitivity of CBI and TBI to detect a tomographically normal keratoconus fellow eye was 53% and 62%, respectively.
Conclusion A highly asymmetric corneal ectasia with regular tomographic finding in a fellow eye is rare among keratoconus patients. In such cases, a biomechanical analysis may be useful in detecting early signs of corneal ectasia. In our analysis, the TBI showed high sensitivity for detecting a biomechanical abnormality in tomographically regular fellow eyes.
Bereits bekannt:
-
Die Erkennung einer frühen Ektasie ist als Screening vor refraktivchirurgischen Eingriffen essenziell.
-
Die Verwendung von tomografischen und biomechanischen Indizes wie z. B. des BAD-D, CBI und TBI erhöht die Wahrscheinlichkeit ein sehr frühes Keratokonus-Stadium von einem gesunden Auge zu unterscheiden.
Neu beschrieben:
-
Der TBI zeigte eine etwas höhere Sensitivität als der CBI (62% vs. 53%), den Keratokonus in einem tomografisch unauffälligen Keratokonus-Partnerauge zu erkennen.
-
21% der Keratokonus-Partneraugen konnten weder durch den CBI noch durch den TBI als auffällig erkannt werden.
Already known:
-
Detection of early ectasia is an essential screening step which must be performed prior to refractive surgical procedures.
-
The use of tomographic and biomechanical indices such as BAD-D, CBI, and TBI increases the likelihood of distinguishing an eye with very early stage keratoconus from a healthy eye.
Newly described:
-
The TBI showed slightly higher sensitivity than the CBI (62% vs. 53%) for detecting keratoconus in a tomographically unremarkable keratoconus partner eye.
-
21% of the keratoconus partner eyes could not be recognized as conspicuous, either by CBI or TBI.
Publication History
Received: 16 December 2022
Accepted: 05 July 2023
Article published online:
11 August 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Grzybowski A, McGhee CN. The early history of keratoconus prior to Nottinghamʼs landmark 1854 treatise on conical cornea: a review. Clin Exp Optom 2013; 96: 140-145
- 2 Wyman AL. Benedict Duddell: pioneer oculist of the 18th century. J R Soc Med 1992; 85: 412-415
- 3 Sherwin T, Brookes NH. Morphological changes in keratoconus: pathology or pathogenesis. Clin Exp Ophthalmol 2004; 32: 211-217
- 4 Imbornoni LM, McGhee CNJ. Belin MW. * Evolution of Keratoconus: From Diagnosis to Therapeutics. Klin Monbl Augenheilkd 2018; 235: 680-688
- 5 Belin MW, Khachikian SS. An introduction to understanding elevation-based topography: how elevation data are displayed – a review. Clin Exp Ophthalmol 2009; 37: 14-29
- 6 Rabsilber TM, Khoramnia R, Auffarth GU. Anterior chamber measurements using Pentacam rotating Scheimpflug camera. J Cataract Refract Surg 2006; 32: 456-459
- 7 Kanclerz P, Khoramnia R, Wang X. Current Developments in Corneal Topography and Tomography. Diagnostics (Basel) 2021; 11: 1466
- 8 Khoramnia R, Rabsilber TM, Auffarth GU. Central and peripheral pachymetry measurements according to age using the Pentacam rotating Scheimpflug camera. J Cataract Refract Surg 2007; 33: 830-836
- 9 Augustin VA, Köppe MK, Son HS. et al. Scheimpflug Versus Optical Coherence Tomography to Detect Subclinical Corneal Edema in Fuchs Endothelial Corneal Dystrophy. Cornea 2022; 41: 1378-1385
- 10 Hashemi H, Beiranvand A, Yekta A. et al. Pentacam top indices for diagnosing subclinical and definite keratoconus. J Curr Ophthalmol 2016; 28: 21-26
- 11 Shetty R, Rao H, Khamar P. et al. Keratoconus Screening Indices and Their Diagnostic Ability to Distinguish Normal From Ectatic Corneas. Am J Ophthalmol 2017; 181: 140-148
- 12 Belin MW, Duncan JK. Keratoconus: The ABCD Grading System. Klin Monbl Augenheilkd 2016; 233: 701-707
- 13 Belin MW, Jang HS, Borgstrom M. Keratoconus: Diagnosis and Staging. Cornea 2022; 41: 1-11
- 14 Gomes JA, Tan D, Rapuano CJ. et al. Global consensus on keratoconus and ectatic diseases. Cornea 2015; 34: 359-369
- 15 Shirayama-Suzuki M, Amano S. et al. Longitudinal analysis of corneal topography in suspected keratoconus. Br J Ophthalmol 2009; 93: 815-819
- 16 Li X, Rabinowitz YS, Rasheed K. et al. Longitudinal study of the normal eyes in unilateral keratoconus patients. Ophthalmology 2004; 111: 440-446
- 17 Roberts CJ, Dupps Jr. WJ. Biomechanics of corneal ectasia and biomechanical treatments. J Cataract Refract Surg 2014; 40: 991-998
- 18 Herber R, Terai N, Pillunat KR. et al. Dynamischer Scheimpflug-Analyzer (Corvis ST) zur Bestimmung kornealer biomechanischer Parameter: Ein praxisbezogener Überblick. Ophthalmologe 2018; 115: 635-643
- 19 Valbon BF, Ambrósio Jr R, Fontes BM. et al. Ocular biomechanical metrics by CorVis ST in healthy Brazilian patients. J Refract Surg 2014; 30: 468-473
- 20 Vinciguerra R, Ambrósio jr. R, Roberts CJ. et al. Biomechanical Characterization of Subclinical Keratoconus Without Topographic or Tomographic Abnormalities. J Refract Surg 2017; 33: 399-407
- 21 Belin MW, Khachikian SS. Keratoconus/ectasia detection with the oculus pentacam: Belin/Ambrósio enhanced ectasia display. Highlights Ophthalmol 2007; 35: 5-12
- 22 Herber R, Hasanli A, Lenk J. et al. Evaluation of Corneal Biomechanical Indices in Distinguishing Between Normal, Very Asymmetric, and Bilateral Keratoconic Eyes. J Refract Surg 2022; 38: 364-372
- 23 Davidson AE, Hayes S, Hardcastle AJ. et al. The pathogenesis of keratoconus. Eye (Lond) 2014; 28: 189-195
- 24 Georgiou T, Funnell CL, Cassels-Brown A. et al. Influence of ethnic origin on the incidence of keratoconus and associated atopic disease in Asians and white patients. Eye (Lond) 2004; 18: 379-383
- 25 Pearson AR, Soneji B, Sarvananthan N. et al. Does ethnic origin influence the incidence or severity of keratoconus?. Eye (Lond) 2000; 14: 625-628
- 26 Millodot M, Shneor E, Albou S. et al. Prevalence and associated factors of keratoconus in Jerusalem: a cross-sectional study. Ophthalmic Epidemiol 2011; 18: 91-97
- 27 Gorskova EN, Sevostʼianov EN. [Epidemiology of keratoconus in the Urals]. Vestn Oftalmol 1998; 114: 38-40
- 28 Godefrooij DA, de Wit GA, Uiterwaal CS. et al. Age-specific Incidence and Prevalence of Keratoconus: A Nationwide Registration Study. Am J Ophthalmol 2017; 175: 169-172
- 29 Chan E, Chong EW, Lingham G. et al. Prevalence of Keratoconus Based on Scheimpflug Imaging: The Raine Study. Ophthalmology 2021; 128: 515-521
- 30 Edmund C. Corneal elasticity and ocular rigidity in normal and keratoconic eyes. Acta Ophthalmol (Copenh) 1988; 66: 134-140
- 31 Koh S, Ambrósio jr. R, Inoue R. et al. Detection of Subclinical Corneal Ectasia Using Corneal Tomographic and Biomechanical Assessments in a Japanese Population. J Refract Surg 2019; 35: 383-390
- 32 Koh S, Inoue R, Ambrósio jr. R. et al. Correlation Between Corneal Biomechanical Indices and the Severity of Keratoconus. Cornea 2020; 39: 215-221
- 33 Chan TCY, Wang YM, Yu M. et al. Comparison of Corneal Tomography and a New Combined Tomographic Biomechanical Index in Subclinical Keratoconus. J Refract Surg 2018; 34: 616-621
- 34 Chan TC, Wang YM, Yu M. et al. Comparison of corneal dynamic parameters and tomographic measurements using Scheimpflug imaging in keratoconus. Br J Ophthalmol 2018; 102: 42-47
- 35 Jędzierowska M, Koprowski R. Novel dynamic corneal response parameters in a practice use: a critical review. Biomed Eng Online 2019; 18: 17
- 36 Zhang M, Zhang F, Li Y. et al. Early Diagnosis of Keratoconus in Chinese Myopic Eyes by Combining Corvis ST with Pentacam. Curr Eye Res 2020; 45: 118-123
- 37 Fraenkel D, Hamon L, Daas L. et al. Tomographically normal partner eye in very asymmetrical corneal ectasia: biomechanical analysis. J Cataract Refract Surg 2021; 47: 366-372
- 38 Herber R, Ramm L, Spoerl E. et al. Assessment of corneal biomechanical parameters in healthy and keratoconic eyes using dynamic bidirectional applanation device and dynamic Scheimpflug analyzer. J Cataract Refract Surg 2019; 45: 778-788
- 39 Vinciguerra R, Ambrósio jr. R, Elsheikh A. et al. Detection of Keratoconus With a New Biomechanical Index. J Refract Surg 2016; 32: 803-810
- 40 Ambrósio jr. R, Lopes BT, Faria-Correia F. et al. Integration of Scheimpflug-Based Corneal Tomography and Biomechanical Assessments for Enhancing Ectasia Detection. J Refract Surg 2017; 33: 434-443
- 41 Sedaghat MR, Momeni-Moghaddam H, Ambrósio jr. R. et al. Diagnostic Ability of Corneal Shape and Biomechanical Parameters for Detecting Frank Keratoconus. Cornea 2018; 37: 1025-1034
- 42 Ferreira-Mendes J, Lopes BT, Faria-Correia F. et al. Enhanced Ectasia Detection Using Corneal Tomography and Biomechanics. Am J Ophthalmol 2019; 197: 7-16
- 43 Kataria P, Padmanabhan P, Gopalakrishnan A. et al. Accuracy of Scheimpflug-derived corneal biomechanical and tomographic indices for detecting subclinical and mild keratectasia in a South Asian population. J Cataract Refract Surg 2019; 45: 328-336
- 44 Steinberg J, Siebert M, Katz T. et al. Tomographic and Biomechanical Scheimpflug Imaging for Keratoconus Characterization: A Validation of Current Indices. J Refract Surg 2018; 34: 840-847
- 45 Almeida jr. GC, Guido RC, Balarin Silva HM. et al. New artificial intelligence index based on Scheimpflug corneal tomography to distinguish subclinical keratoconus from healthy corneas. J Cataract Refract Surg 2022; 48: 1168-1174
- 46 Asroui L, Dagher SA, Elsheikh A. et al. Biomechanical Evaluation of Topographically and Tomographically Normal Fellow Eyes of Patients With Keratoconus. J Refract Surg 2022; 38: 318-325
- 47 Ambrósio jr. R, Machado AP, Leão E. et al. Optimized artificial intelligence for enhanced ectasia detection using Scheimpflug-based corneal tomography and biomechanical data. Am J Ophthalmol 2023; 251: 126-142