Synthesis, Table of Contents Synthesis 2024; 56(11): 1793-1798DOI: 10.1055/a-2261-3255 paper Visible-Light-Driven Oxidative Chlorination of Alkyl sp3 C–H Bonds with HCl/Air at Room Temperature Lai Xu , Chong Mei , Wenjun Lu ∗ Recommend Article Abstract Buy Article All articles of this category Abstract An aerobic chlorination of alkyl sp3 C–H bonds of functionalized alkanes and simple alkanes has been established successfully under visible light at room temperature. The reaction is performed in the presence of catalytic NaNO2 using HCl or NaCl/acid as a chlorine source and air as a terminal oxidant under atmospheric pressure. It is suggested that NOCl from NaNO2/HCl is a crucial species in the catalytic cycle involving an aerobic oxidation and a photochemical radical chlorination. Key words Key wordsalkane - chlorination - air - oxidation - sodium nitrite Full Text References References 1a Lin R, Amrute AP, Perezramirez J. Chem. Rev. 2017; 117: 4182 1b Kozlowski MC. Acc. Chem. Res. 2017; 50: 638 1c Oxidation of C‒H Bonds . Lu W, Zhou L. John Wiley & Sons; Hoboken: 2017 2 Manabe Y, Kitawaki Y, Nagasaki M, Fukase K, Matsubara H, Hino Y, Fukuyama T, Ryu I. Chem. Eur. J. 2014; 20: 12750 3 Zhao M, Lu W. Org. Lett. 2017; 19: 4560 4a Egloff G, Schaad RE, Lowry CD. Chem. Rev. 1931; 8: 1 4b Schmidt VA, Quinn RK, Brusoe AT, Alexanian EJ. J. Am. Chem. Soc. 2014; 136: 14389 5a Kennedy RJ, Stock AM. J. Org. Chem. 1960; 25: 1901 5b Hill CL, Smegal JA, Henly TJ. J. Org. Chem. 1983; 48: 3277 5c Takahiko K, Hidenobu M, Yoshihisa M. Chem. Lett. 1998; 27: 1085 5d Reis PM, Armando J, Silva L, da Silva JJ. R. F, Pombeiro AJ. L. Chem. Commun. 2000; 1845 5e Li Y, Ju J, Jia J, Sheng W, Han L, Gao J. Chin. J. Chem. 2010; 28: 2428 5f He Y, Goldsmith CR. Synlett 2010; 1377 6 Zhao M, Lu W. Org. Lett. 2018; 20: 5264 7 Dean JA. Lange’s Handbook of Chemistry, 15th ed. McGraw-Hill; New York: 1999 8a Mei C, Hu Y, Lu W. Synthesis 2018; 50: 2999 8b Xu L, Mei C, Zhao M, Lu W. ChemRxiv 2023; preprint 9a Lynn EV. J. Am. Chem. Soc. 1919; 41: 368 9b Lynn EV, Hilton O. J. Am. Chem. Soc. 1922; 44: 645 9c Busch GE, Wilson KR. J. Chem. Phys. 1972; 56: 3655 9d Lebl R, Cantillo D, Kappe CO. React. Chem. Eng. 2019; 4: 738 9e Leifert D, Studer A. Angew. Chem. Int. Ed. 2020; 59: 74 10a Pass G, Sutcliffe H. Practical Inorganic Chemistry: Preparation, Reactions and Instrumental Methods. Chapman Hall; London: 1968 10b Williams DL. H. In Nitrosation Reactions and the Chemistry of Nitric Oxide . Elsevier Science; Amsterdam: 2004 11 Barham BP, Reid PJ. Chem. Phys. Lett. 2002; 361: 49 12a Radner F. J. Org. Chem. 1988; 53: 3548 12b Iskra J, Stavber S, Zupan M. Tetrahedron Lett. 2008; 49: 893 12c Ren Y.-L, Shang H, Wang J, Tian X, Zhao S, Wang Q, Li F. Adv. Synth. Catal. 2013; 355: 3437 13 Schrader AM, Schroll AL, Barany G. J. Org. Chem. 2011; 76: 7882 14 Sopeña S, Cozzolino M, Maquilón C, Escudero-Adán EC, Martínez Belmonte M, Kleij AW. Angew. Chem. Int. Ed. 2018; 57: 11203 Supplementary Material Supplementary Material Supporting Information