Synthesis, Table of Contents Synthesis 2024; 56(19): 3037-3044DOI: 10.1055/a-2349-6736 paper Iodo-Annulations of N-Benzyl-propiolamides Leading To Azaspiro[5.5]undecatrienones or Benzo[c]azepinones Chada Raji Reddy ∗ a Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India , Thallamapuram Nagendraprasad a Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India b Department of Chemistry, Sri Venkateswara University, Tirupati 517502, Andhra Pradesh, India , Jannatul Islam a Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India , Uprety Ajaykumar a Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India , Cirandur Suresh Reddy b Department of Chemistry, Sri Venkateswara University, Tirupati 517502, Andhra Pradesh, India , Srivari Chandrasekhar ∗ a Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India › Author Affiliations Recommend Article Abstract Buy Article All articles of this category Abstract Iodine-mediated oxidative annulations of N-benzyl-propiolamides are disclosed for the first time, providing either azaspiro[5.5]undecatrienones via dearomative ipso-annulation or benzo[c]azepinones through ortho-annulation. The selective construction of the aforementioned products is based on the ceric ammonium nitrate (CAN)-promoted divergent reactivity of the propiolamide, directed by the substituents on the phenyl ring of the N-benzyl group. Key words Key words ipso-annulation - ceric ammonium nitrate - propiolamide - dearomatization - aza-spirocycle - benzo-azepinone Full Text References References For selected reviews, see: 1a Hiesinger K, Dar’in D, Proschak E, Krasavin M. J. Med. Chem. 2021; 64: 150 1b Lepovitz LT, Martin SF. Tetrahedron 2019; 75: 130637 1c Chupakhin E, Babich O, Prosekov A, Asyakina L, Krasavin M. Molecules 2019; 24: 4165 1d Zheng Y.-J, Tice CM. Expert Opin. Drug Discovery 2016; 11: 831 1e Marson CM. Chem. Soc. Rev. 2011; 40: 5514 For representative reviews, see: 2a Heravi MM, Zadsirjan V. RSC Adv. 2020; 10: 44247 2b Kerru N, Gummidi L, Maddila S, Gangu KK, Jonnalagadda SB. Molecules 2020; 25: 1909 2c Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257 2d Prusov E, Maier ME. Tetrahedron 2007; 63: 10486 For selected reviews, see: 3a Li N, Shi Z, Wang W.-Z, Yuan Y, Ye K.-Y. Chem. Asian J. 2023; 18: e202300122 3b Cheng Y.-Z, Feng Z, Zhang X, You S.-L. Chem. Soc. Rev. 2022; 51: 2145 3c Reddy CR, Prajapti SK, Warudikar K, Ranjan R, Rao BB. Org. Biomol. Chem. 2017; 15: 3130 For selected reviews, see: 4a Yang W.-C, Zhang M.-M, Feng J.-G. Adv. Synth. Catal. 2020; 362: 4446 4b Vessally E, Babazadeh M, Didehban K, Hosseinian A, Edjlali L. Curr. Org. Chem. 2018; 22: 286 4c Song R, Xie Y. Chin. J. Chem. 2017; 35: 280 5a Kagho MD, Hintersatz H, Ihle A, Zeng H, Schrey H, Colisi W, Klahn P, Stadler M, Bruhn C, Ruffer T, Lang H, Banert K. J. Org. Chem. 2021; 86: 14903 5b Park Y, Lee YJ, Hong S, Lee M, Park H.-G. Org. Lett. 2012; 14: 852 5c Fleischhacker W, Lauritz S, Urban E, Baumann P, Bittiger H. Arch. Pharm. 1996; 329: 149 5d Ibragimov AA, Osmanov Z, Yagudaev MR, Yunusov SYu. Chem. Nat. Compd. 1983; 19: 202 6a Yang P, Tang M, Liu Y, Zhang W, Wang Y.-X, Wang J, Xie L.-G. Asian J. Org. Chem. 2023; 12: e202300349 6b Yang M, Hua J, Wang H, Ma T, Liu C, He W, Zhu N, Hu Y, Fang Z, Guo K. J. Org. Chem. 2022; 87: 8445 6c Claus AR, Goulart TA, Back DF, Zeni G. Eur. J. Org. Chem. 2021; 2180 For representative papers, see: 7a Reddy CR, Kolgave DH, Subbarao M, Aila M, Prajapti SK. Org. Lett. 2020; 22: 5342 7b Reddy CR, Ajaykumar U, Kolgave DH, Ramesh R. J. Org. Chem. 2023; 88: 7117 7c Reddy CR, Ajaykumar U, Patil AD, Ramesh R. Org. Biomol. Chem. 2023; 21: 6379 8 Reddy CR, Srinivasu E, Subbarao M. J. Org. Chem. 2023; 88: 16485 9a Iodine Chemistry and Applications . Kaiho T. John Wiley & Sons; Hoboken: 2015 9b Flores A, Cots E, Berges J, Muniz K. Adv. Synth. Catal. 2019; 361: 2 9c Togo H, Iida S. Synlett 2006; 2159 For representative references, see: 10a Guillemyn K, Kleczkowska P, Lesniak A, Dyniewicz J, Van der Poorten O, Van den Eynde I, Keresztes A, Varga E, Lai J, Porreca F, Chung NN, Lemieux C, Mika J, Rojewska E, Makuch W, Van Duppen J, Przewlocka B, Vanden BroeckJ, Lipkowski AJ, Schiller PW, Tourwé D, Ballet S. Eur. J. Med. Chem. 2015; 92: 64 10b Wallace MD, McGuire MA, Yu MS, Goldfinger L, Liu L, Dai W, Shilcrat S. Org. Process Res. Dev. 2004; 8: 738 10c Progress in Heterocyclic Chemistry, Vol. 15. Bremner JB, Gribble GW, Joule JA. Elsevier; Oxford: 2003: 385 10d Miller WH, Alberts DP, Bhatnagar PK, Bondinell WE, Callahan JF, Calvo RR, Cousins RD, Erhard KF, Heerding DA, Keenan RM, Kwon C, Manley PJ, Newlander KA, Ross ST, Samanen JM, Uzinskas IN, Venslavsky JW, Yuan CC, Haltiwanger RC, Gowen M, Hwang SM, James IE, Lark MW, Rieman DJ, Stroup GB, Azzarano LM, Salyers KL, Smith BR, Ward KW, Johanson KO, Huffman WF. J. Med. Chem. 2000; 43: 22 10e Petuškovs A, Shubin K. Chem. Heterocycl. Compd. 2016; 52: 530 11a Aggarwal T, Kumar S, Verma AK. Org. Biomol. Chem. 2016; 14: 7639 11b Likhar PR, Racharlawar SS, Karkhelikar MV, Subhas MS, Sridhar SB. Synthesis 2011; 15: 2407 11c Zhang X, Larock RC. J. Am. Chem. Soc. 2005; 127: 12230 11d Likhar PR, Subhas MS, Roy S, Kantam ML, Sridhar B, Seth RK, Biswas S. Org. Biomol. Chem. 2009; 7: 85 Supplementary Material Supplementary Material Supporting Information