Aktuelle Ernährungsmedizin 2025; 50(04): 292-308
DOI: 10.1055/a-2401-5260
CME-Fortbildung

Mittelkettige Triglyceride und deren Einsatz in der Ernährungsmedizin

Christina Heidt
1   Hochschule Trier, Fachrichtung Lebensmitteltechnik, Hauptcampus Schneidershof, Trier, Deutschland
,
Mary Newport
2   Spring Hill Neonatology, Inc., Spring Hill, FL, USA
,
Ulrike Kämmerer
3   Universitätsklinikum Würzburg, Frauenklinik, Würzburg, Deutschland
› Author Affiliations
Preview

Mittelkettige Triglyceride (MCT) sind Glycerinester von gesättigten Fettsäuren mittlerer Kettenlänge (C6:0–C12:0). Sie unterscheiden sich grundlegend von den üblichen langkettigen Fettsäuren in Nahrungsfetten sowohl in ihren biochemischen und physikalischen Eigenschaften als auch hinsichtlich Resorption, Transportmechanismus und zellulärem Metabolismus. Aufgrund dieser Unterschiede haben MCT einen wichtigen Stellenwert in der Ernährungsmedizin. Trotz der hohen Bekanntheit von MCT im Bereich der klinischen Ernährungstherapie, existieren zahlreiche Forschungslücken. Zudem werden immer neue Indikationsgebiete für die Verwendung von MCT entdeckt. Der Artikel gibt eine breite Übersicht zu MCT, ausgewählten Anwendungsgebieten und aktuellen Forschungsthemen.

Abstract

Medium-chain triglycerides (MCTs) are glycerol esters of saturated fatty acids with medium chain lengths. MCTs fundamentally differ from regular dietary fats in their biochemical and physical properties, as well as in terms of absorption, transport mechanisms, and cellular metabolism. Due to these differences, MCTs hold significant importance in nutritional medicine. Despite the high recognition of MCTs in the field of clinical nutrition therapy, numerous research gaps still exist. Furthermore, new indications for the use of MCTs are continually being discovered. This article provides a comprehensive overview of MCTs, selected applications, and current research topics.



Publication History

Article published online:
13 August 2025

© 2025. Thieme. All rights reserved.

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Watanabe S, Tsujino S. Applications of Medium-Chain Triglycerides in Foods. Front Nutr 2022; 9: 802805
  • 2 Penhaligan J, Poppitt SD, Miles-Chan JL. The Role of Bovine and Non-Bovine Milk in Cardiometabolic Health: Should We Raise the „Baa“?. Nutrients 2022; 14
  • 3 Hartmann BM, Schmidt C, Sandfuchs K. Bundeslebensmittelschlüssel (BLS). Version 3.02. Karlsruhe: Max Rubner-Institut – Bundesforschungsinstitut für Ernährung und Lebensmittel 2014
  • 4 Siener R, Ehrhardt C, Bitterlich N. et al. Effect of a fat spread enriched with medium-chain triacylglycerols and a special fatty acid-micronutrient combination on cardiometabolic risk factors in overweight patients with diabetes. Nutr Metab (Lond) 2011; 8: 21
  • 5 Bloch R, Haberich FJ. Medium chain fatty acids. Absorption, metabolism and clinical significance. Dtsch Med Wochenschr 1973; 98: 20-25
  • 6 Hashim SA, Arteaga A, Van Itallie TB. Effect of a saturated medium-chain triglyceride on serum-lipids in man. Lancet 1960; 1: 1105-1108
  • 7 Jadhav HB, Annapure US. Triglycerides of medium-chain fatty acids: a concise review. J Food Sci Technol 2023; 60: 2143-2152
  • 8 Lee YY, Tang TK, Chan ES. et al. Medium chain triglyceride and medium-and long chain triglyceride: metabolism, production, health impacts and its applications – a review. Crit Rev Food Sci Nutr 2022; 62: 4169-4185
  • 9 Łoś-Rycharska E, Kieraszewicz Z, Czerwionka-Szaflarska M. Medium chain triglycerides (MCT) formulas in paediatric and allergological practice. Prz Gastroenterol 2016; 11: 226-231
  • 10 Augustin K, Khabbush A, Williams S. et al. Mechanisms of action for the medium-chain triglyceride ketogenic diet in neurological and metabolic disorders. Lancet Neurol 2018; 17: 84-93
  • 11 Han FY, Conboy-Schmidt L, Rybachuk G. et al. Dietary medium chain triglycerides for management of epilepsy: New data from human, dog, and rodent studies. Epilepsia 2021; 62: 1790-1806
  • 12 Shcherbakova K, Schwarz A, Apryatin S. et al. Supplementation of Regular Diet With Medium-Chain Triglycerides for Procognitive Effects: A Narrative Review. Front Nutr 2022; 9: 934497
  • 13 Schönfeld P, Wojtczak L. Short- and medium-chain fatty acids in energy metabolism: the cellular perspective. J Lipid Res 2016; 57: 943-954
  • 14 Roopashree P, Shetty SS, Kumari NS. Effect of medium chain fatty acid in human health and disease. Journal of Functional Foods 2021; 87: 104724
  • 15 Shah ND, Limketkai BN. The use of medium-chain triglycerides in gastrointestinal disorders. Practical Gastroenterology 2017; 160: 20-25
  • 16 Van Calcar SC, Sowa M, Rohr F. et al. Nutrition management guideline for very-long chain acyl-CoA dehydrogenase deficiency (VLCAD): An evidence- and consensus-based approach. Mol Genet Metab 2020; 131: 23-37
  • 17 Bach AC, Babayan VK. Medium-chain triglycerides: an update. Am J Clin Nutr 1982; 36: 950-962
  • 18 Omer E, Chiodi C. Fat digestion and absorption: Normal physiology and pathophysiology of malabsorption, including diagnostic testing. Nutr Clin Pract 2024; 39: S6-s16
  • 19 Pepino MY, Kuda O, Samovski D. et al. Structure-function of CD36 and importance of fatty acid signal transduction in fat metabolism. Annu Rev Nutr 2014; 34: 281-303
  • 20 Thompson G. Fat absorption and metabolism. Gastroenterol Jpn 1984; 19: 251-259
  • 21 Heidt C, Wimmer K. Mittelkettige Triglyceride und deren Ensatz in der pädiatrischen Gastroenterologie und Hepatologie. Ernährungs Umschau 2024; 71
  • 22 Nakamura K, Hagihara K, Nagai N. et al. Ketogenic effects of medium chain triglycerides containing formula and its correlation to breath acetone in healthy volunteers: a randomized, double-blinded, placebo-controlled, single dose-response study. Front Nutr 2023; 10: 1224740
  • 23 Heidt C, Fobker M, Newport M. et al. Beta-Hydroxybutyrate (BHB), Glucose, Insulin, Octanoate (C8), and Decanoate (C10) Responses to a Medium-Chain Triglyceride (MCT) Oil with and without Glucose: A Single-Center Study in Healthy Adults. Nutrients 2023; 15
  • 24 Takeuchi H, Sekine S, Kojima K. et al. The application of medium-chain fatty acids: edible oil with a suppressing effect on body fat accumulation. Asia Pac J Clin Nutr 2008; 17: 320-323
  • 25 Traul KA, Driedger A, Ingle DL. et al. Review of the toxicologic properties of medium-chain triglycerides. Food Chem Toxicol 2000; 38: 79-98
  • 26 Mason E, Hindmarch CCT, Dunham-Snary KJ. Medium-chain Acyl-COA dehydrogenase deficiency: Pathogenesis, diagnosis, and treatment. Endocrinol. Diabetes Metab 2023; 6: e385
  • 27 Karunanidhi A, Basu S, Zhao XJ. et al. Heptanoic and medium branched-chain fatty acids as anaplerotic treatment for medium chain acyl-CoA dehydrogenase deficiency. Mol Genet Metab 2023; 140: 107689
  • 28 Wood TR, Kelly C. Insulin, glucose and beta-hydroxybutyrate responses to a medium-chain triglyceride-based sports supplement: A pilot study. Journal of Insulin Resistance 2017; 2: 1-9
  • 29 Lin TY, Liu HW, Hung TM. The Ketogenic Effect of Medium-Chain Triacylglycerides. Front Nutr 2021; 8: 747284
  • 30 Grothues D, Engelhardt H, Genzel-Boroviczeny O. et al. S2k Leitlinie Cholestase im Neugeborenenalter. AWMF-Register Nr. 068/015 2020
  • 31 Beyer G, Hoffmeister A, Michl P. et al. S3-leitlinie pankreatitis–leitlinie der deutschen gesellschaft für gastroenterologie, verdauungs-und stoffwechselkrankheiten (DGVS)–september 2021–AWMF registernummer 021-003. Zeitschrift für Gastroenterologie 2022; 60: 419-521
  • 32 Hammermann J, Claßen M, Schmidt S. et al. S3-Leitlinie: Mukoviszidose bei Kindern in den ersten beiden Lebensjahren, Diagnostik und Therapie. AWMF online. 2020: 026-024
  • 33 Lamprecht G, Pape U-F, Witte M. et al. S3-Leitlinie der Deutschen Gesellschaft für Ernährungsmedizin e. V. in Zusammenarbeit mit der AKE, der GESKES und der DGVS. Aktuelle Ernährungsmedizin 2014; 39: e57-e71
  • 34 Deutsche Gesellschaft für Lymphologie und Gesellschaft Deutschsprachiger Lymphologen (2017) S2k Leitlinie „Diagnostik und Therapie des Lymphödems“. AWMF Reg.-Nr.058-001 M
  • 35 Mutschler F, Wimmer K. Ernährung bei Kindern mit cholestatischen Lebererkrankungen. Kinder- und Jugendmedizin 2022; 22: 450-460
  • 36 Diéguez-Castillo C, Jiménez-Luna C, Prados J. et al. State of the Art in Exocrine Pancreatic Insufficiency. Medicina (Kaunas) 2020; 56
  • 37 Campbell I, Campbell H. Mechanisms of insulin resistance, mitochondrial dysfunction and the action of the ketogenic diet in bipolar disorder. Focus on the PI3K/AKT/HIF1-a pathway. Med Hypotheses 2020; 145: 110299
  • 38 Wiemer-Kruel A. Ketogene Ernährungstherapie. Monatsschrift Kinderheilkunde 2024; 1-6
  • 39 Kossoff EH, Zupec-Kania BA, Auvin S. et al. Optimal clinical management of children receiving dietary therapies for epilepsy: Updated recommendations of the International Ketogenic Diet Study Group. Epilepsia Open 2018; 3: 175-192
  • 40 Barzegar M, Afghan M, Tarmahi V. et al. Ketogenic diet: overview, types, and possible anti-seizure mechanisms. Nutr Neurosci 2021; 24: 307-316
  • 41 Eleti S. Drugs in Alzheimer's disease Dementia: An overview of current pharmacological management and future directions. Psychiatr Danub 2016; 28: 136-140
  • 42 Espay AJ, Sturchio A, Schneider LS. et al. Soluble Amyloid-β Consumption in Alzheimer's Disease. J Alzheimers Dis 2021; 82: 1403-1415
  • 43 Cunnane S, Nugent S, Roy M. et al. Brain fuel metabolism, aging, and Alzheimer’s disease. Nutrition 2011; 27: 3-20
  • 44 Mosconi L, Brys M, Glodzik-Sobanska L. et al. Early detection of Alzheimer’s disease using neuroimaging. Exp Gerontol 2007; 42: 129-138
  • 45 Leybaert L, De Bock M, Van Moorhem M. et al. Neurobarrier coupling in the brain: adjusting glucose entry with demand. J Neurosci Res 2007; 85: 3213-3220
  • 46 Cholerton B, Baker LD, Craft S. Insulin, cognition, and dementia. Eur J Pharmacol 2013; 719: 170-179
  • 47 An Y, Varma VR, Varma S. et al. Evidence for brain glucose dysregulation in Alzheimer's disease. Alzheimers Dement 2018; 14: 318-329
  • 48 Cunnane SC, Courchesne-Loyer A, Vandenberghe C. et al. Can Ketones Help Rescue Brain Fuel Supply in Later Life? Implications for Cognitive Health during Aging and the Treatment of Alzheimer's Disease. Front Mol Neurosci 2016; 9: 53
  • 49 Owen OE, Morgan AP, Kemp HG. et al. Brain metabolism during fasting. J Clin Invest 1967; 46: 1589-1595
  • 50 Croteau E, Castellano CA, Fortier M. et al. A cross-sectional comparison of brain glucose and ketone metabolism in cognitively healthy older adults, mild cognitive impairment and early Alzheimer's disease. Exp Gerontol 2018; 107: 18-26
  • 51 Yin JX, Maalouf M, Han P. et al. Ketones block amyloid entry and improve cognition in an Alzheimer’s model. Neurobiol Aging 2016; 39: 25-37
  • 52 Youm YH, Nguyen KY, Grant RW. et al. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat Med 2015; 21: 263-269
  • 53 Xu Y, Zheng F, Zhong Q. et al. Ketogenic Diet as a Promising Non-Drug Intervention for Alzheimer's Disease: Mechanisms and Clinical Implications. J Alzheimers Dis 2023; 92: 1173-1198
  • 54 Shippy DC, Wilhelm C, Viharkumar PA. et al. β-Hydroxybutyrate inhibits inflammasome activation to attenuate Alzheimer’s disease pathology. J Neuroinflammation 2020; 17: 280
  • 55 Cunnane SC, Trushina E, Morland C. et al. Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat Rev Drug Discov 2020; 19: 609-633
  • 56 Chung JY, Kim OY, Song J. Role of ketone bodies in diabetes-induced dementia: sirtuins, insulin resistance, synaptic plasticity, mitochondrial dysfunction, and neurotransmitter. Nutr Rev 2022; 80: 774-785
  • 57 Hernandez AR, Hernandez CM, Truckenbrod LM. et al. Age and Ketogenic Diet Have Dissociable Effects on Synapse-Related Gene Expression Between Hippocampal Subregions. Front Aging Neurosci 2019; 11: 239
  • 58 Andersen JV, Westi EW, Neal ES. et al. β-Hydroxybutyrate and Medium-Chain Fatty Acids are Metabolized by Different Cell Types in Mouse Cerebral Cortex Slices. Neurochem Res 2023; 48: 54-61
  • 59 Meer N, Fischer T. Medium-Chain Triglycerides (MCTs) for the Symptomatic Treatment of Dementia-Related Diseases: A Systematic Review. J Nutr Metab 2024; 2024: 9672969
  • 60 Nebeling LC, Lerner E. Implementing a ketogenic diet based on medium-chain triglyceride oil in pediatric patients with cancer. J Am Diet Assoc 1995; 95: 693-697
  • 61 Nebeling LC, Miraldi F, Shurin SB. et al. Effects of a ketogenic diet on tumor metabolism and nutritional status in pediatric oncology patients: two case reports. J Am Coll Nutr 1995; 14: 202-208
  • 62 Khodabakhshi A, Akbari ME, Mirzaei HR. et al. Effects of Ketogenic metabolic therapy on patients with breast cancer: A randomized controlled clinical trial. Clin Nutr 2021; 40: 751-758
  • 63 Hagihara K, Kajimoto K, Osaga S. et al. Promising Effect of a New Ketogenic Diet Regimen in Patients with Advanced Cancer. Nutrients 2020; 12
  • 64 Egashira R, Matsunaga M, Miyake A. et al. Long-Term Effects of a Ketogenic Diet for Cancer. Nutrients 2023; 15
  • 65 Mori T, Ohmori H, Luo Y. et al. Giving combined medium-chain fatty acids and glucose protects against cancer-associated skeletal muscle atrophy. Cancer Sci 2019; 110: 3391-3399
  • 66 Santos HO, Howell S, Earnest CP. et al. Coconut oil intake and its effects on the cardiometabolic profile – A structured literature review. Prog Cardiovasc Dis 2019; 62: 436-443
  • 67 Wallace TC. Health Effects of Coconut Oil – A Narrative Review of Current Evidence. J Am Coll Nutr 2019; 38: 97-107
  • 68 Takaoka T, Yaegashi A, Watanabe D. Prevalence of and Survival with Cachexia among Patients with Cancer: A Systematic Review and Meta-Analysis. Adv Nutr 2024; 15: 100282
  • 69 Ryan AM, Prado CM, Sullivan ES. et al. Effects of weight loss and sarcopenia on response to chemotherapy, quality of life, and survival. Nutrition 2019; 67-68: 110539
  • 70 Tisdale MJ. Cancer cachexia. Curr Opin Gastroenterol 2010; 26: 146-151
  • 71 Schmidt SF, Rohm M, Herzig S. et al. Cancer Cachexia: More Than Skeletal Muscle Wasting. Trends Cancer 2018; 4: 849-860
  • 72 Roopashree PG, Shetty SS, Shetty VV. et al. Inhibitory effects of medium-chain fatty acids on the proliferation of human breast cancer cells via suppression of Akt/mTOR pathway and modulating the Bcl-2 family protein. J Cell Biochem 2024; doi:10.1002/jcb.30571
  • 73 Sheela DL, Narayanankutty A, Nazeem PA. et al. Lauric acid induce cell death in colon cancer cells mediated by the epidermal growth factor receptor downregulation: An in silico and in vitro study. Hum Exp Toxicol 2019; 38: 753-761
  • 74 Narayanan A, Baskaran SA, Amalaradjou MA. et al. Anticarcinogenic properties of medium chain fatty acids on human colorectal, skin and breast cancer cells in vitro. Int J Mol Sci 2015; 16: 5014-5027
  • 75 Lappano R, Sebastiani A, Cirillo F. et al. The lauric acid-activated signaling prompts apoptosis in cancer cells. Cell Death Discov 2017; 3: 17063
  • 76 Fauser JK, Matthews GM, Cummins AG. et al. Induction of apoptosis by the medium-chain length fatty acid lauric acid in colon cancer cells due to induction of oxidative stress. Chemotherapy 2013; 59: 214-224
  • 77 Wang H, Shao Z, Xu Z. et al. Antiproliferative and apoptotic activity of gemcitabine-lauric acid conjugate on human bladder cancer cells. Iran J Basic Med Sci 2022; 25: 536-542
  • 78 Takagi T, Fujiwara-Tani R, Mori S. et al. Lauric Acid Overcomes Hypoxia-Induced Gemcitabine Chemoresistance in Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2023; 24
  • 79 Cohen LA, Thompson DO. The influence of dietary medium chain triglycerides on rat mammary tumor development. Lipids 1987; 22: 455-461
  • 80 Ling PR, Istfan NW, Lopes SM. et al. Structured lipid made from fish oil and medium-chain triglycerides alters tumor and host metabolism in Yoshida-sarcoma-bearing rats. Am J Clin Nutr 1991; 53: 1177-1184
  • 81 Ohkawa A, Sato N, Hatakeyama K. Effect of medium-chain triglyceride emulsion in total parenteral nutrition on experimental hepatic metastasis in the rat. JPEN J Parenter Enteral Nutr 1997; 21: 220-223
  • 82 Spiekerkoetter U, Lindner M, Santer R. et al. Treatment recommendations in long-chain fatty acid oxidation defects: consensus from a workshop. J Inherit Metab Dis 2009; 32: 498-505
  • 83 Bhattacharya K. Investigation and management of the hepatic glycogen storage diseases. Transl Pediatr 2015; 4: 240-248
  • 84 Rossi A, Hoogeveen IJ, Bastek VB. et al. Dietary lipids in glycogen storage disease type III: A systematic literature study, case studies, and future recommendations. J Inherit Metab Dis 2020; 43: 770-777
  • 85 Parhofer KG. Update lipidology : Evidence-based treatment of dyslipidemia. Inn Med (Heidelb) 2023; 64: 611-621
  • 86 Wakabayashi T, Takahashi M, Okazaki H. et al. Current Diagnosis and Management of Familial Hypobetalipoproteinemia 1. J Atheroscler Thromb 2024; 31: 1005-1023
  • 87 Baertling F, Mayatepek E, Thimm E. et al. Malonic aciduria: long-term follow-up of new patients detected by newborn screening. Eur J Pediatr 2014; 173: 1719-1722
  • 88 Kanabus M, Fassone E, Hughes SD. et al. The pleiotropic effects of decanoic acid treatment on mitochondrial function in fibroblasts from patients with complex I deficient Leigh syndrome. J Inherit Metab Dis 2016; 39: 415-426
  • 89 Embleton ND, Jennifer Moltu S, Lapillonne A. et al. Enteral Nutrition in Preterm Infants (2022): A Position Paper From the ESPGHAN Committee on Nutrition and Invited Experts. J Pediatr Gastroenterol Nutr 2023; 76: 248-268