Subscribe to RSS
DOI: 10.1055/a-2401-5260
Mittelkettige Triglyceride und deren Einsatz in der Ernährungsmedizin

Mittelkettige Triglyceride (MCT) sind Glycerinester von gesättigten Fettsäuren mittlerer Kettenlänge (C6:0–C12:0). Sie unterscheiden sich grundlegend von den üblichen langkettigen Fettsäuren in Nahrungsfetten sowohl in ihren biochemischen und physikalischen Eigenschaften als auch hinsichtlich Resorption, Transportmechanismus und zellulärem Metabolismus. Aufgrund dieser Unterschiede haben MCT einen wichtigen Stellenwert in der Ernährungsmedizin. Trotz der hohen Bekanntheit von MCT im Bereich der klinischen Ernährungstherapie, existieren zahlreiche Forschungslücken. Zudem werden immer neue Indikationsgebiete für die Verwendung von MCT entdeckt. Der Artikel gibt eine breite Übersicht zu MCT, ausgewählten Anwendungsgebieten und aktuellen Forschungsthemen.
Abstract
Medium-chain triglycerides (MCTs) are glycerol esters of saturated fatty acids with medium chain lengths. MCTs fundamentally differ from regular dietary fats in their biochemical and physical properties, as well as in terms of absorption, transport mechanisms, and cellular metabolism. Due to these differences, MCTs hold significant importance in nutritional medicine. Despite the high recognition of MCTs in the field of clinical nutrition therapy, numerous research gaps still exist. Furthermore, new indications for the use of MCTs are continually being discovered. This article provides a comprehensive overview of MCTs, selected applications, and current research topics.
Publication History
Article published online:
13 August 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1
Watanabe S,
Tsujino S.
Applications of Medium-Chain Triglycerides in Foods. Front Nutr 2022; 9: 802805
MissingFormLabel
- 2
Penhaligan J,
Poppitt SD,
Miles-Chan JL.
The Role of Bovine and Non-Bovine Milk in Cardiometabolic Health: Should We
Raise the „Baa“?. Nutrients 2022; 14
MissingFormLabel
- 3
Hartmann BM,
Schmidt C,
Sandfuchs K.
Bundeslebensmittelschlüssel (BLS). Version 3.02. Karlsruhe: Max Rubner-Institut
– Bundesforschungsinstitut für Ernährung und Lebensmittel 2014
MissingFormLabel
- 4
Siener R,
Ehrhardt C,
Bitterlich N.
et al. Effect of a fat spread enriched with medium-chain triacylglycerols and a special
fatty acid-micronutrient combination on cardiometabolic risk factors in
overweight patients with diabetes. Nutr Metab (Lond) 2011; 8: 21
MissingFormLabel
- 5
Bloch R,
Haberich FJ.
Medium chain fatty acids. Absorption, metabolism and clinical significance. Dtsch
Med Wochenschr 1973; 98: 20-25
MissingFormLabel
- 6
Hashim SA,
Arteaga A,
Van Itallie TB.
Effect of a saturated medium-chain triglyceride on serum-lipids in man. Lancet 1960;
1: 1105-1108
MissingFormLabel
- 7
Jadhav HB,
Annapure US.
Triglycerides of medium-chain fatty acids: a concise review. J Food Sci Technol 2023;
60: 2143-2152
MissingFormLabel
- 8
Lee YY,
Tang TK,
Chan ES.
et al. Medium chain triglyceride and medium-and long chain triglyceride: metabolism,
production, health impacts and its applications – a review. Crit Rev Food Sci Nutr
2022; 62: 4169-4185
MissingFormLabel
- 9
Łoś-Rycharska E,
Kieraszewicz Z,
Czerwionka-Szaflarska M.
Medium chain triglycerides (MCT) formulas in paediatric and allergological
practice. Prz Gastroenterol 2016; 11: 226-231
MissingFormLabel
- 10
Augustin K,
Khabbush A,
Williams S.
et al. Mechanisms of action for the medium-chain triglyceride ketogenic diet in
neurological and metabolic disorders. Lancet Neurol 2018; 17: 84-93
MissingFormLabel
- 11
Han FY,
Conboy-Schmidt L,
Rybachuk G.
et al. Dietary medium chain triglycerides for management of epilepsy: New data from
human, dog, and rodent studies. Epilepsia 2021; 62: 1790-1806
MissingFormLabel
- 12
Shcherbakova K,
Schwarz A,
Apryatin S.
et al. Supplementation of Regular Diet With Medium-Chain Triglycerides for Procognitive
Effects: A Narrative Review. Front Nutr 2022; 9: 934497
MissingFormLabel
- 13
Schönfeld P,
Wojtczak L.
Short- and medium-chain fatty acids in energy metabolism: the cellular
perspective. J Lipid Res 2016; 57: 943-954
MissingFormLabel
- 14
Roopashree P,
Shetty SS,
Kumari NS.
Effect of medium chain fatty acid in human health and disease. Journal of Functional
Foods 2021; 87: 104724
MissingFormLabel
- 15
Shah ND,
Limketkai BN.
The use of medium-chain triglycerides in gastrointestinal disorders. Practical Gastroenterology
2017; 160: 20-25
MissingFormLabel
- 16
Van Calcar SC,
Sowa M,
Rohr F.
et al. Nutrition management guideline for very-long chain acyl-CoA dehydrogenase
deficiency (VLCAD): An evidence- and consensus-based approach. Mol Genet Metab 2020;
131: 23-37
MissingFormLabel
- 17
Bach AC,
Babayan VK.
Medium-chain triglycerides: an update. Am J Clin Nutr 1982; 36: 950-962
MissingFormLabel
- 18
Omer E,
Chiodi C.
Fat digestion and absorption: Normal physiology and pathophysiology of
malabsorption, including diagnostic testing. Nutr Clin Pract 2024; 39: S6-s16
MissingFormLabel
- 19
Pepino MY,
Kuda O,
Samovski D.
et al. Structure-function of CD36 and importance of fatty acid signal transduction
in
fat metabolism. Annu Rev Nutr 2014; 34: 281-303
MissingFormLabel
- 20
Thompson G.
Fat absorption and metabolism. Gastroenterol Jpn 1984; 19: 251-259
MissingFormLabel
- 21
Heidt C,
Wimmer K.
Mittelkettige Triglyceride und deren Ensatz in der pädiatrischen
Gastroenterologie und Hepatologie. Ernährungs Umschau 2024; 71
MissingFormLabel
- 22
Nakamura K,
Hagihara K,
Nagai N.
et al. Ketogenic effects of medium chain triglycerides containing formula and its
correlation to breath acetone in healthy volunteers: a randomized,
double-blinded, placebo-controlled, single dose-response study. Front Nutr 2023; 10:
1224740
MissingFormLabel
- 23
Heidt C,
Fobker M,
Newport M.
et al. Beta-Hydroxybutyrate (BHB), Glucose, Insulin, Octanoate (C8), and Decanoate
(C10) Responses to a Medium-Chain Triglyceride (MCT) Oil with and without
Glucose: A Single-Center Study in Healthy Adults. Nutrients 2023; 15
MissingFormLabel
- 24
Takeuchi H,
Sekine S,
Kojima K.
et al. The application of medium-chain fatty acids: edible oil with a suppressing
effect on body fat accumulation. Asia Pac J Clin Nutr 2008; 17: 320-323
MissingFormLabel
- 25
Traul KA,
Driedger A,
Ingle DL.
et al. Review of the toxicologic properties of medium-chain triglycerides. Food Chem
Toxicol 2000; 38: 79-98
MissingFormLabel
- 26
Mason E,
Hindmarch CCT,
Dunham-Snary KJ.
Medium-chain Acyl-COA dehydrogenase deficiency: Pathogenesis, diagnosis, and
treatment. Endocrinol. Diabetes Metab 2023; 6: e385
MissingFormLabel
- 27
Karunanidhi A,
Basu S,
Zhao XJ.
et al. Heptanoic and medium branched-chain fatty acids as anaplerotic treatment for
medium chain acyl-CoA dehydrogenase deficiency. Mol Genet Metab 2023; 140: 107689
MissingFormLabel
- 28
Wood TR,
Kelly C.
Insulin, glucose and beta-hydroxybutyrate responses to a medium-chain
triglyceride-based sports supplement: A pilot study. Journal of Insulin Resistance
2017; 2: 1-9
MissingFormLabel
- 29
Lin TY,
Liu HW,
Hung TM.
The Ketogenic Effect of Medium-Chain Triacylglycerides. Front Nutr 2021; 8: 747284
MissingFormLabel
- 30
Grothues D,
Engelhardt H,
Genzel-Boroviczeny O.
et al. S2k Leitlinie Cholestase im Neugeborenenalter. AWMF-Register Nr. 068/015 2020
MissingFormLabel
- 31
Beyer G,
Hoffmeister A,
Michl P.
et al. S3-leitlinie pankreatitis–leitlinie der deutschen gesellschaft für
gastroenterologie, verdauungs-und stoffwechselkrankheiten (DGVS)–september
2021–AWMF registernummer 021-003. Zeitschrift für Gastroenterologie 2022; 60: 419-521
MissingFormLabel
- 32
Hammermann J,
Claßen M,
Schmidt S.
et al. S3-Leitlinie: Mukoviszidose bei Kindern in den ersten beiden Lebensjahren,
Diagnostik und Therapie. AWMF online. 2020: 026-024
MissingFormLabel
- 33
Lamprecht G,
Pape U-F,
Witte M.
et al. S3-Leitlinie der Deutschen Gesellschaft für Ernährungsmedizin e. V. in
Zusammenarbeit mit der AKE, der GESKES und der DGVS. Aktuelle Ernährungsmedizin 2014;
39: e57-e71
MissingFormLabel
- 34 Deutsche Gesellschaft für Lymphologie und Gesellschaft Deutschsprachiger
Lymphologen (2017) S2k Leitlinie „Diagnostik und Therapie des Lymphödems“. AWMF
Reg.-Nr.058-001 M
MissingFormLabel
- 35
Mutschler F,
Wimmer K.
Ernährung bei Kindern mit cholestatischen Lebererkrankungen. Kinder- und Jugendmedizin
2022; 22: 450-460
MissingFormLabel
- 36
Diéguez-Castillo C,
Jiménez-Luna C,
Prados J.
et al. State of the Art in Exocrine Pancreatic Insufficiency. Medicina (Kaunas) 2020;
56
MissingFormLabel
- 37
Campbell I,
Campbell H.
Mechanisms of insulin resistance, mitochondrial dysfunction and the action of
the ketogenic diet in bipolar disorder. Focus on the PI3K/AKT/HIF1-a
pathway. Med Hypotheses 2020; 145: 110299
MissingFormLabel
- 38
Wiemer-Kruel A.
Ketogene Ernährungstherapie. Monatsschrift Kinderheilkunde 2024; 1-6
MissingFormLabel
- 39
Kossoff EH,
Zupec-Kania BA,
Auvin S.
et al. Optimal clinical management of children receiving dietary therapies for
epilepsy: Updated recommendations of the International Ketogenic Diet Study
Group. Epilepsia Open 2018; 3: 175-192
MissingFormLabel
- 40
Barzegar M,
Afghan M,
Tarmahi V.
et al. Ketogenic diet: overview, types, and possible anti-seizure mechanisms. Nutr
Neurosci 2021; 24: 307-316
MissingFormLabel
- 41
Eleti S.
Drugs in Alzheimer's disease Dementia: An overview of current
pharmacological management and future directions. Psychiatr Danub 2016; 28: 136-140
MissingFormLabel
- 42
Espay AJ,
Sturchio A,
Schneider LS.
et al. Soluble Amyloid-β Consumption in Alzheimer's Disease. J Alzheimers Dis
2021; 82: 1403-1415
MissingFormLabel
- 43
Cunnane S,
Nugent S,
Roy M.
et al. Brain fuel metabolism, aging, and Alzheimer’s disease. Nutrition 2011; 27:
3-20
MissingFormLabel
- 44
Mosconi L,
Brys M,
Glodzik-Sobanska L.
et al. Early detection of Alzheimer’s disease using neuroimaging. Exp Gerontol 2007;
42: 129-138
MissingFormLabel
- 45
Leybaert L,
De Bock M,
Van Moorhem M.
et al. Neurobarrier coupling in the brain: adjusting glucose entry with demand. J
Neurosci Res 2007; 85: 3213-3220
MissingFormLabel
- 46
Cholerton B,
Baker LD,
Craft S.
Insulin, cognition, and dementia. Eur J Pharmacol 2013; 719: 170-179
MissingFormLabel
- 47
An Y,
Varma VR,
Varma S.
et al. Evidence for brain glucose dysregulation in Alzheimer's disease. Alzheimers
Dement 2018; 14: 318-329
MissingFormLabel
- 48
Cunnane SC,
Courchesne-Loyer A,
Vandenberghe C.
et al. Can Ketones Help Rescue Brain Fuel Supply in Later Life? Implications for
Cognitive Health during Aging and the Treatment of Alzheimer's
Disease. Front Mol Neurosci 2016; 9: 53
MissingFormLabel
- 49
Owen OE,
Morgan AP,
Kemp HG.
et al. Brain metabolism during fasting. J Clin Invest 1967; 46: 1589-1595
MissingFormLabel
- 50
Croteau E,
Castellano CA,
Fortier M.
et al. A cross-sectional comparison of brain glucose and ketone metabolism in
cognitively healthy older adults, mild cognitive impairment and early
Alzheimer's disease. Exp Gerontol 2018; 107: 18-26
MissingFormLabel
- 51
Yin JX,
Maalouf M,
Han P.
et al. Ketones block amyloid entry and improve cognition in an Alzheimer’s model.
Neurobiol Aging 2016; 39: 25-37
MissingFormLabel
- 52
Youm YH,
Nguyen KY,
Grant RW.
et al. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated
inflammatory disease. Nat Med 2015; 21: 263-269
MissingFormLabel
- 53
Xu Y,
Zheng F,
Zhong Q.
et al. Ketogenic Diet as a Promising Non-Drug Intervention for Alzheimer's
Disease: Mechanisms and Clinical Implications. J Alzheimers Dis 2023; 92: 1173-1198
MissingFormLabel
- 54
Shippy DC,
Wilhelm C,
Viharkumar PA.
et al. β-Hydroxybutyrate inhibits inflammasome activation to attenuate Alzheimer’s
disease pathology. J Neuroinflammation 2020; 17: 280
MissingFormLabel
- 55
Cunnane SC,
Trushina E,
Morland C.
et al. Brain energy rescue: an emerging therapeutic concept for neurodegenerative
disorders of ageing. Nat Rev Drug Discov 2020; 19: 609-633
MissingFormLabel
- 56
Chung JY,
Kim OY,
Song J.
Role of ketone bodies in diabetes-induced dementia: sirtuins, insulin
resistance, synaptic plasticity, mitochondrial dysfunction, and
neurotransmitter. Nutr Rev 2022; 80: 774-785
MissingFormLabel
- 57
Hernandez AR,
Hernandez CM,
Truckenbrod LM.
et al. Age and Ketogenic Diet Have Dissociable Effects on Synapse-Related Gene
Expression Between Hippocampal Subregions. Front Aging Neurosci 2019; 11: 239
MissingFormLabel
- 58
Andersen JV,
Westi EW,
Neal ES.
et al. β-Hydroxybutyrate and Medium-Chain Fatty Acids are Metabolized by Different
Cell
Types in Mouse Cerebral Cortex Slices. Neurochem Res 2023; 48: 54-61
MissingFormLabel
- 59
Meer N,
Fischer T.
Medium-Chain Triglycerides (MCTs) for the Symptomatic Treatment of
Dementia-Related Diseases: A Systematic Review. J Nutr Metab 2024; 2024: 9672969
MissingFormLabel
- 60
Nebeling LC,
Lerner E.
Implementing a ketogenic diet based on medium-chain triglyceride oil in
pediatric patients with cancer. J Am Diet Assoc 1995; 95: 693-697
MissingFormLabel
- 61
Nebeling LC,
Miraldi F,
Shurin SB.
et al. Effects of a ketogenic diet on tumor metabolism and nutritional status in
pediatric oncology patients: two case reports. J Am Coll Nutr 1995; 14: 202-208
MissingFormLabel
- 62
Khodabakhshi A,
Akbari ME,
Mirzaei HR.
et al. Effects of Ketogenic metabolic therapy on patients with breast cancer: A
randomized controlled clinical trial. Clin Nutr 2021; 40: 751-758
MissingFormLabel
- 63
Hagihara K,
Kajimoto K,
Osaga S.
et al. Promising Effect of a New Ketogenic Diet Regimen in Patients with Advanced
Cancer. Nutrients 2020; 12
MissingFormLabel
- 64
Egashira R,
Matsunaga M,
Miyake A.
et al. Long-Term Effects of a Ketogenic Diet for Cancer. Nutrients 2023; 15
MissingFormLabel
- 65
Mori T,
Ohmori H,
Luo Y.
et al. Giving combined medium-chain fatty acids and glucose protects against
cancer-associated skeletal muscle atrophy. Cancer Sci 2019; 110: 3391-3399
MissingFormLabel
- 66
Santos HO,
Howell S,
Earnest CP.
et al. Coconut oil intake and its effects on the cardiometabolic profile – A structured
literature review. Prog Cardiovasc Dis 2019; 62: 436-443
MissingFormLabel
- 67
Wallace TC.
Health Effects of Coconut Oil – A Narrative Review of Current Evidence. J Am Coll
Nutr 2019; 38: 97-107
MissingFormLabel
- 68
Takaoka T,
Yaegashi A,
Watanabe D.
Prevalence of and Survival with Cachexia among Patients with Cancer: A
Systematic Review and Meta-Analysis. Adv Nutr 2024; 15: 100282
MissingFormLabel
- 69
Ryan AM,
Prado CM,
Sullivan ES.
et al. Effects of weight loss and sarcopenia on response to chemotherapy, quality
of
life, and survival. Nutrition 2019; 67-68: 110539
MissingFormLabel
- 70
Tisdale MJ.
Cancer cachexia. Curr Opin Gastroenterol 2010; 26: 146-151
MissingFormLabel
- 71
Schmidt SF,
Rohm M,
Herzig S.
et al. Cancer Cachexia: More Than Skeletal Muscle Wasting. Trends Cancer 2018; 4:
849-860
MissingFormLabel
- 72
Roopashree PG,
Shetty SS,
Shetty VV.
et al. Inhibitory effects of medium-chain fatty acids on the proliferation of human
breast cancer cells via suppression of Akt/mTOR pathway and modulating the Bcl-2
family protein. J Cell Biochem 2024; doi:10.1002/jcb.30571
MissingFormLabel
- 73
Sheela DL,
Narayanankutty A,
Nazeem PA.
et al. Lauric acid induce cell death in colon cancer cells mediated by the epidermal
growth factor receptor downregulation: An in silico and in vitro study. Hum Exp Toxicol
2019; 38: 753-761
MissingFormLabel
- 74
Narayanan A,
Baskaran SA,
Amalaradjou MA.
et al. Anticarcinogenic properties of medium chain fatty acids on human colorectal,
skin and breast cancer cells in vitro. Int J Mol Sci 2015; 16: 5014-5027
MissingFormLabel
- 75
Lappano R,
Sebastiani A,
Cirillo F.
et al. The lauric acid-activated signaling prompts apoptosis in cancer cells. Cell
Death Discov 2017; 3: 17063
MissingFormLabel
- 76
Fauser JK,
Matthews GM,
Cummins AG.
et al. Induction of apoptosis by the medium-chain length fatty acid lauric acid in
colon cancer cells due to induction of oxidative stress. Chemotherapy 2013; 59: 214-224
MissingFormLabel
- 77
Wang H,
Shao Z,
Xu Z.
et al. Antiproliferative and apoptotic activity of gemcitabine-lauric acid conjugate
on
human bladder cancer cells. Iran J Basic Med Sci 2022; 25: 536-542
MissingFormLabel
- 78
Takagi T,
Fujiwara-Tani R,
Mori S.
et al. Lauric Acid Overcomes Hypoxia-Induced Gemcitabine Chemoresistance in Pancreatic
Ductal Adenocarcinoma. Int J Mol Sci 2023; 24
MissingFormLabel
- 79
Cohen LA,
Thompson DO.
The influence of dietary medium chain triglycerides on rat mammary tumor
development. Lipids 1987; 22: 455-461
MissingFormLabel
- 80
Ling PR,
Istfan NW,
Lopes SM.
et al. Structured lipid made from fish oil and medium-chain triglycerides alters tumor
and host metabolism in Yoshida-sarcoma-bearing rats. Am J Clin Nutr 1991; 53: 1177-1184
MissingFormLabel
- 81
Ohkawa A,
Sato N,
Hatakeyama K.
Effect of medium-chain triglyceride emulsion in total parenteral nutrition on
experimental hepatic metastasis in the rat. JPEN J Parenter Enteral Nutr 1997; 21:
220-223
MissingFormLabel
- 82
Spiekerkoetter U,
Lindner M,
Santer R.
et al. Treatment recommendations in long-chain fatty acid oxidation defects: consensus
from a workshop. J Inherit Metab Dis 2009; 32: 498-505
MissingFormLabel
- 83
Bhattacharya K.
Investigation and management of the hepatic glycogen storage diseases. Transl Pediatr
2015; 4: 240-248
MissingFormLabel
- 84
Rossi A,
Hoogeveen IJ,
Bastek VB.
et al. Dietary lipids in glycogen storage disease type III: A systematic literature
study, case studies, and future recommendations. J Inherit Metab Dis 2020; 43: 770-777
MissingFormLabel
- 85
Parhofer KG.
Update lipidology : Evidence-based treatment of dyslipidemia. Inn Med (Heidelb) 2023;
64: 611-621
MissingFormLabel
- 86
Wakabayashi T,
Takahashi M,
Okazaki H.
et al. Current Diagnosis and Management of Familial Hypobetalipoproteinemia 1. J Atheroscler
Thromb 2024; 31: 1005-1023
MissingFormLabel
- 87
Baertling F,
Mayatepek E,
Thimm E.
et al. Malonic aciduria: long-term follow-up of new patients detected by newborn
screening. Eur J Pediatr 2014; 173: 1719-1722
MissingFormLabel
- 88
Kanabus M,
Fassone E,
Hughes SD.
et al. The pleiotropic effects of decanoic acid treatment on mitochondrial function
in
fibroblasts from patients with complex I deficient Leigh syndrome. J Inherit Metab
Dis 2016; 39: 415-426
MissingFormLabel
- 89
Embleton ND,
Jennifer Moltu S,
Lapillonne A.
et al. Enteral Nutrition in Preterm Infants (2022): A Position Paper From the ESPGHAN
Committee on Nutrition and Invited Experts. J Pediatr Gastroenterol Nutr 2023; 76:
248-268
MissingFormLabel