RSS-Feed abonnieren
DOI: 10.1055/a-2435-5589
Pd/Mengphos-Catalyzed High-Order [4+4] Cycloaddition for Efficient Synthesis of Oxazocines
Autoren
We are grateful to the National Natural Science Foundation of China (21702189), the Science and Technology Research and Development Plan Joint Fund (cultivation of superior disciplines project 222301420042), Hanjiang Normal University (2024B09), and Zhengzhou University of China for financial support of this research.

Abstract
The development of new catalytic systems that enable regio- and chemoselective construction of diversely functionalized oxazocines is an important topic in organic synthesis and pharmacochemistry. Herein, a novel Pd/Mengphos complex was designed and applied in a palladium-catalyzed high-order [4+4] cycloaddition of 2-substituted allylic carbonates to α,β-unsaturated imines, allowing facile access to versatile oxazocines in good yields with excellent b/l and Z/E selectivities (up to 92% yield and complete b/l and Z/E selectivities). The reaction exhibited a broad substrate scope, mild reaction conditions, and good functional group compatibility. In addition, an asymmetric version has also been tested, affording the desired oxazocines in moderate to good enantioselectivity.
Key words
palladium catalysis - Mengphos - [4+4] cycloaddition - α,β-unsaturated imines - allyl carbonates - oxazocinesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2435-5589.
- Supporting Information (PDF) (opens in new window)
Publikationsverlauf
Eingereicht: 02. August 2024
Angenommen nach Revision: 07. Oktober 2024
Accepted Manuscript online:
07. Oktober 2024
Artikel online veröffentlicht:
04. November 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Liu Y, Li W, Zhang J. Nat. Sci. Rev. 2017; 4: 326
- 2 Comprehensive Asymmetric Catalysis, Suppls. I–II., Vols. I–III. Jacobsen EN, Pfaltz A, Yamamoto H. Springer; New York: 1999
- 3a Guo M, Zhang P, Li E.-Q. Top. Curr. Chem. 2023; 381: 33
- 3b Wang Q, Meng Y, Wu L, Li E.-Q. Chin. Chem. Lett. 2023; 34: 108544
- 3c Hashimoto T, Maruoka K. Chem. Rev. 2015; 115: 5366
- 3d You Y, Li Q, Zhang YP, Zhao JQ, Wang ZH, Yuan WC. ChemCatChem 2022; 14: e202101887
- 3e Bagherinejad A, Alizadeh A. Org. Biomol. Chem. 2022; 20: 7188
- 3f Trost BM, Mata G. Acc. Chem. Res. 2020; 53: 1293
- 3g Han X, Lin P, Li Q. Chin. Chem. Lett. 2019; 30: 1495
- 3h Duan J, Li Y.-F, Ding C.-H. Chin. Chem. Lett. 2023; 34: 108401
- 4a Trost BM, Jiao Z, Liu Y, Min C, Hung C.-IJ. J. Am. Chem. Soc. 2020; 142: 18628
- 4b Trost BM, Bai W.-J, Hohn C, Bai Y, Cregg JJ. J. Am. Chem. Soc. 2018; 140: 6710
- 4c Trost BM, Wang Y, Hung C.-IJ. Nat. Chem. 2020; 12: 294
- 4d Chen Z.-C, Chen Z, Yang Z.-H, Guo L, Du W, Chen Y.-C. Angew. Chem. Int. Ed. 2019; 58: 15021
- 4e Zhu J.-X, Chen Z.-C, Du W, Chen Y.-C. Angew. Chem. Int. Ed. 2022; 61: e202200880
- 4f Xiao B.-X, Jiang B, Yan R.-J, Zhu J.-X, Xie K, Gao X.-Y, Ouyang Q, Du W, Chen Y.-C. J. Am. Chem. Soc. 2021; 143: 4809
- 4g Shen L, Zheng Y, Lin Z, Qin T, Huang Z, Zi W. Angew. Chem. Int. Ed. 2023; 62: e202217051
- 4h Zheng Y, Qin T, Zi W. J. Am. Chem. Soc. 2021; 143: 1038
- 4i Li M.-M, Qu BE, Xiao Y.-Q, Xiao W.-J, Lu L.-Q. Sci. Bull. 2021; 66: 1719
- 4j Shi B, Liu J.-B, Wang Z.-T, Wang L, Lan Y, Lu L.-Q, Xiao W.-J. Angew. Chem. Int. Ed. 2022; 61: e202117215
- 5a Kumari P, Liu W, Wang C.-J, Dai J, Wang M.-X, Yang Q.-Q, Deng Y.-H, Shao Z. Chin. J. Chem. 2020; 38: 151
- 5b Liu Y, Wang Z, Huang Z, Zheng X, Yang W, Deng W. Angew. Chem. Int. Ed. 2020; 59: 1238
- 5c Trost BM, Huang Z, Murhade GM. Science 2018; 362: 564
- 6a Liu H, Liu Y, Yuan C, Wang G.-P, Zhu S.-F, Wu Y, Wang B, Sun Z, Xiao Y, Zhou Q.-L, Guo H. Org. Lett. 2016; 18: 1302
- 6b Zhao H.-W, Tian T, Pang H.-L, Li B, Chen X.-Q, Yang Z, Meng W, Song X.-Q, Zhao Y.-D, Liu Y.-Y. Adv. Synth. Catal. 2016; 358: 2619
- 6c Liu Y, Yang W, Wu Y, Mao B, Gao X, Liu H, Sun Z, Xiao Y, Guo H. Adv. Synth. Catal. 2016; 358: 2867
- 6d Chen Y, Zang M, Wang W, Liu Y.-Z, Luo X, Deng W.-P. Chin. J. Chem. 2023; 41: 2825
- 6e Yang W.-L, Huang Z, Liu Y.-Z, Yu X, Deng W.-P. Chin. J. Chem. 2020; 38: 1571
- 7 Mao B, Liu H, Yan Z, Xu Y, Xu J, Wang W, Wu Y, Guo H. Angew. Chem. Int. Ed. 2020; 59: 11316
- 8 Shintani R, Moriya K, Hayashi T. Chem. Commun. 2011; 47: 3057
- 9 Xu J, Shi W, Liu M, Liao J, Wang W, Wu Y, Guo H. Adv. Synth. Catal. 2022; 364: 2060
- 10a Uno H, Kawai K, Araki T, Shiro M, Shibata N. Angew. Chem. Int. Ed. 2022; 61: e202117635
- 10b Xie H, Chen L, Han Z, Yang Z, Sun J, Huang H. Org. Lett. 2023; 25: 5011
- 11a Faller JW, Tully MT. J. Am. Chem. Soc. 1972; 94: 2676
- 11b Faller JW, Thomsen ME, Mattina MJ. J. Am. Chem. Soc. 1971; 93: 2642
- 12 Yang Y, Zhu B, Zhu L, Jiang Y, Guo C, Gu J, Ouyang Q, Du W, Chen Y. Chem. Sci. 2021; 12: 11399
- 13a Jia S, Ma M, Li E.-Q, Duan Z, Mathey F. Org. Lett. 2021; 23: 3337
- 13b Gan Z, Zhi M, Han R, Li E.-Q, Duan Z, Mathey F. Org. Lett. 2019; 21: 2782
- 13c Zhi M, Gan Z, Ma R, Cui H, Li E.-Q, Duan Z, Mathey F. Org. Lett. 2019; 21: 3210
- 13d Cui H, Li K, Wang Y, Song M, Wang C, Wei D, Li E.-Q, Duan Z, Mathey F. Org. Biomol. Chem. 2020; 18: 3740
- 13e Wang Y, Li E, Duan Z. Chem. Sci. 2022; 13: 8131
- 13f Meng Q, Meng Y, Liu Q, Yu B, Li Z.-J, Li E.-Q, Zhang J. Adv. Sci. 2024; 2402170
- 14 Meng Y, Wang Q, Yao X, Wei D, Liu Y.-G, Li E.-Q, Duan Z. Org. Lett. 2022; 24: 9205
- 15 CCDC 2158695 (3aa) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
For selected reviews, see:
For selected examples, see: