Synthesis
DOI: 10.1055/a-2649-0086
Paper
Published as part of the Special Topic Dedicated to Prof. Paul Knochel

Water-Mediated Rhenium-Catalyzed Photodeoxygenation of Polyfunctional Organic N-Oxides

CEA, CNRS, NIMBE, Université Paris-Saclay, Gif-sur-Yvette, France
,
Marianne Kjellberg
CEA, CNRS, NIMBE, Université Paris-Saclay, Gif-sur-Yvette, France
,
Alexis Bouchet
CEA, CNRS, NIMBE, Université Paris-Saclay, Gif-sur-Yvette, France
,
CEA, CNRS, NIMBE, Université Paris-Saclay, Gif-sur-Yvette, France
,
CEA, CNRS, NIMBE, Université Paris-Saclay, Gif-sur-Yvette, France
,
CEA, CNRS, NIMBE, Université Paris-Saclay, Gif-sur-Yvette, France
› Author Affiliations

Supported by: Centre National de la Recherche Scientifique
Supported by: Commissariat à l'Énergie Atomique et aux Énergies Alternatives
Supported by: Agence Nationale de la Recherche ANR-21-CE07-0060, ANR-22-CE07-0028
Supported by: Labex Charmmmat
Supported by: ADEME
Funding Information We thank the CEA, CNRS, ERC (Consolidator Grant no. 818260), and ANR (PRC grant no. ANR-22-CE07-0028, JCJC grant no. ANR-21-CE07-0060) for funding. M.K. was supported by a Master’s fellowship from the LABEX Charmmmat followed by a PhD fellowship from ADEME/CEA.


Preview

Dedication

Dedicated to Professor Paul Knochel on the occasion of his 70th birthday.

Abstract

The oxidation of N-heterocycles is key to their functionalization as it enhances their reactivity in the ortho position. However, an efficient post-reduction is often required to access the targeted compound. Here, an air-stable rhenium(I)-based photocatalyst enables the fast deoxygenation of N-heterocyclic and alkyl N-oxides, avoiding sacrificial oxophilic reagents. We demonstrate that adding H2O dramatically accelerates the reaction rate. The system tolerates air contamination, is scalable, and shows a high functional group tolerance toward other reducible functions (free alcohol, carboxylic acid, ester, nitrile, halogen, etc.) and light-sensitive N-heterocycles.

Supplementary Material



Publication History

Received: 02 June 2025

Accepted after revision: 03 July 2025

Accepted Manuscript online:
03 July 2025

Article published online:
07 August 2025

© 2025. Thieme. All rights reserved.

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • References

  • 3 Zhang L, Wang Y. Synthesis 2015; 47: 289
  • 4 For a recent review of deoxygenation methods, see the introduction of: Ryu HK, Song YD, Lee JH. Org Chem Front 2024; 11: 2249
  • 5 Howard E, Olszewski WF. J Am Chem Soc 2002; 81: 1483
  • 6 Kokatla HP, Thomson PF, Bae S, Doddi VR, Lakshman MK. J Org Chem 2011; 76: 7842
  • 8 Spence GG, Taylor EC, Buchardt O. Chem Rev 1970; 70: 231
  • 10 Kim SH, An JH, Lee JH. Org Biomol Chem 2021; 19: 3735
  • 11 Prier CK, Rankic DA, MacMillan DW. Chem Rev 2013; 113: 5322
  • 12 Konev MO, Cardinale L, Jacobi von Wangelin A. Org Lett 2020; 22: 1316
  • 13 Kjellberg M, Ohleier A, Thuéry P, Nicolas E, Anthore-Dalion L, Cantat T. Chem Sci 2021; 12: 10266
  • 14 Hawecker J, Lehn JM, Ziessel R. Helv Chim Acta 2004; 69: 1990
  • 15 See ESI for details on the new setup and its validation.
  • 16 Brandl F, Bergwinkl S, Allacher C, Dick B. Chem Eur J 2020; 26: 7946
  • 18 Prat D, Wells A, Hayler J. et al. Green Chem 2016; 18: 288
  • 19 Degradation of 4-phenyl pyridine was observed in the absence of water under prolonged irradiation with cool white LEDs.
  • 20 Shvydkiv O, Gallagher S, Nolan K, Oelgemoller M. Org Lett 2010; 12: 5170
    • 21a Hawecker J, Lehn J-M, Ziessel R. J Chem Soc, Chem Commun 1983; 536
    • 21b Yam VW-W, Lau VC-Y, Cheung K-K. Organometallics 2002; 14: 2749
    • 22a Sullivan BP, Bolinger CM, Conrad D, Vining WJ, Meyer TJ. J Chem Soc, Chem Commun 1985; 1414
    • 22b Deeba R, Chardon-Noblat S, Costentin C. Chem Sci 2021; 12: 12726
    • 22c Deeba R, Chardon-Noblat S, Costentin C. ACS Catal 2023; 13: 8262
  • 23 A working paper unveiling key mechanistic features and using advanced spectroscopic techniques is available as a preprint: El Moqaouil Z, Kjellberg M, Leibl W. et al. ChemRxiv 2025