Subscribe to RSS
DOI: 10.1055/a-2654-5609
Iron-Catalyzed Stereoselective Nitrogen Atom Transfer for 1,2-cis-Selective Glycosylation
Supported by: National Institute of General Medical Sciences GM134926

Dedication
This work is dedicated to Professor Hisashi Yamamoto on the occasion of his 82nd birthday.
Abstract
This account highlights an iron-catalyzed exclusively 1,2-cis-selective glycosylation method for aminoglycoside synthesis. This selective nitrogen atom transfer reaction is effective for a broad range of glycosyl donors and acceptors, and it can be operated in a reiterative fashion and scaled up to the multigram scale. Mechanistic studies revealed a unique yet generally applicable glycosylation mechanism in which the iron catalyst activates a glycosyl acceptor and an oxidant when it facilitates the cooperative atom transfer of both moieties to a glycosyl donor in an exclusively cis-selective manner.
Keywords
Stereoselective glycosylation - Nitrogen atom transfer - Iron catalysis - Aminoglycoside - Complex-carbohydrate synthesisPublication History
Received: 02 June 2025
Accepted after revision: 14 July 2025
Accepted Manuscript online:
14 July 2025
Article published online:
20 August 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Dwek RA. Chem Rev 1996; 96: 683-720
- 2 Bertozzi CR, Kiessling LL. Science 2001; 291: 2357-2364
- 3 Danishefsky SJ, Bilodeau MT. Angew Chem Int Ed 1996; 35: 1380-1419
- 4 Boltje TJ, Buskas T, Boons G-J. Nat Chem 2009; 1: 611-622
- 5 Zhu X, Schmidt RR. Angew Chem Int Ed 2009; 48: 1900-1934
- 6 Danishefsky SJ, Shue Y-K, Chang MN, Wong C-H. Acc Chem Res 2015; 48: 643-652
- 7 Park Y, Harper KC, Kuhl N, Kwan EE, Liu RY, Jacobsen EN. Science 2017; 355: 162-166
- 8 Bennett CS. Selective Glycosylations: Synthetic Methods and Catalysts. Wiley-VCH; 2017
- 9 Yu B. Acc Chem Res 2018; 51: 507-516
- 10 Levi SM, Jacobsen EN. Catalyst-controlled glycosylation. In Org. React. Vol. 100. John Wiley & Sons, Inc.; 2019: 801-852
- 11 Nigudkar SS, Demchenko AV. Chem Sci 2015; 6: 2687-2704
- 12 Crich D, Sun S. J Am Chem Soc 1998; 120: 435-436
- 13 Kim J-H, Yang H, Boons G-J. Angew Chem Int Ed 2005; 44: 947-949
- 14 Yasomanee JP, Demchenko AV. J Am Chem Soc 2012; 134: 20097-20102
- 15 Chu A-HA, Nguyen SH, Sisel JA, Minciunescu A, Bennett CS. Org Lett 2013; 15: 2566-2569
- 16 Yu F, Li J, DeMent PM, Tu Y-J, Schlegel HB, Nguyen HM. Angew Chem Int Ed 2019; 58: 6957-6961
- 17 Takahashi D, Inaba K, Toshima K. Carbohydr Res 2022; 518: 108579-108588
- 18 Li Q, Levi SM, Jacobsen EN. J Am Chem Soc 2020; 142: 11865-11872
- 19 Ma X, Zheng Z, Fu Y, Zhu X, Liu P, Zhang L. J Am Chem Soc 2021; 143: 11908-11913
- 20 Dang Q-D, Deng Y-H, Sun T-Y. et al. Nature 2024; 632: 313-319
- 21 Xu Y, Masuko S, Takieddin M. et al. Science 2011; 334: 498-501
- 22 Petitou M, van Boeckel CAA. Angew Chem Int Ed 2004; 43: 3118-3133
- 23 Pratt MR, Bertozzi CR. Chem Soc Rev 2005; 34: 58-68
- 24 Griffith DA, Danishefsky SJ. J Am Chem Soc 1990; 112: 5811-5819
- 25 Fitzsimmons BJ, Leblanc Y, Rokach J. J Am Chem Soc 1987; 109: 285-286
- 26 Du Bois J, Tomooka CS, Hong J, Carreira EM. J Am Chem Soc 1997; 119: 3179-3180
- 27 Di Bussolo V, Liu J, Huffman JLG, Gin DY. Angew Chem Int Ed 2000; 39: 204-207
- 28 Kan C, Long CM, Paul M, Ring CM, Tully SE, Rojas CM. Org Lett 2001; 3: 381-384
- 29 Gege C, Oscarson S, Schmidt RR. Tetrahedron Lett 2001; 42: 377-380
- 30 Shang W, Zhu C, Peng F, Pan Z, Ding Y, Xia C. Org Lett 2021; 23: 1222-1227
- 31 Xu Y, Montgomery J. Org Lett 2024; 26: 7474-7478
- 32 Dulaney SB, Huang X. Adv Carbohydr Chem Biochem 2021; 80: 121-164
- 33 Winterfeld GA, Schmidt RR. Angew Chem Int Ed 2001; 40: 2654-2657
- 34 Benakli K, Zha C, Kerns RJ. J Am Chem Soc 2001; 123: 9461-9462
- 35 Orgueira HA, Bartolozzi A, Schell P, Seeberger PH. Angew Chem Int Ed 2002; 41: 2128-2131
- 36 Manabe S, Ishii K, Ito Y. J Am Chem Soc 2006; 128: 10666-10667
- 37 Park J, Kawatkar S, Kim J-H, Boons G-J. Org Lett 2007; 9: 1959-1962
- 38 Mensah EA, Nguyen HM. J Am Chem Soc 2009; 131: 8778-8780
- 39 Mensah EA, Yu F, Nguyen HM. J Am Chem Soc 2010; 132: 14288-14302
- 40 Medina S, Harper MJ, Balmond EI. et al. Org Lett 2016; 18: 4222-4225
- 41 Codeé JDC, Wang L, Zhang Y, Overkleeft HS, van der Marel GA. J Org Chem 2020; 85: 15872-15884
- 42 Pal KB, Guo A, Das M, Báti G, Liu XW. ACS Catal 2020; 10: 6707-6715
- 43 Zhang Y, Ma X, Zhang L. CCS Chem 2023; 5: 2799-2807
- 44 Li H, Zhang D, Li C. et al. J Am Chem Soc 2024; 146: 33316-33323
- 45 Liu G-S, Zhang Y-Q, Yuan Y-A, Xu H. J Am Chem Soc 2013; 135: 3343-3346
- 46 Lu D-F, Zhu C-L, Jia Z-X, Xu H. J Am Chem Soc 2014; 136: 13186-13189
- 47 Lu D-F, Zhu C-L, Sears JD, Xu H. J Am Chem Soc 2016; 138: 11360-11367
- 48 Yin L, Zhang D, Jiang Z, Xu H. Org Lett 2025; 27: 5515-5520
- 49 Yin L, Zhang D, Jiang Z. et al. Tetrahedron Lett 2025; 167: 155678
- 50 Seeberger PH. Acc Chem Res 2015; 48: 1450-1463
- 51 Radović A, Wolford NJ, Li H, Brennessel WW, Xu H, Neidig ML. Organometallics 2023; 42: 1810-1817
- 52 Praly JP. Adv Carbohydr Chem Biochem 2000; 56: 65-151
- 53 Igarashi K, Honma T, Irisawa J. Carbohydr Res 1970; 13: 49-55
- 54 Nielsen MM, Stougaard BA, Bols M, Glibstrup E, Pedersen CM. Eur J Org Chem 2017; 2017: 1281-1284