Subscribe to RSS
DOI: 10.1055/a-2678-6468
Reductive Functionalization of C–C π-Bonds via Alkene Radical Anions
A.P. acknowledges the ARC (FT220100345, DP210100025) for the generous financial support. L.J.F. and T.L.W gratefully acknowledge the Australian Commonwealth Government and the University of Melbourne for the Research Training Program (RTP) Scholarship.

Abstract
Alkene radical anions are powerful yet underutilized intermediates for the construction of C(sp3)–C(sp3) bonds in organic synthesis. This Synpacts article provides an overview of established methods for their generation and functionalization via photoredox catalysis and electrosynthesis. In particular, we highlight our recent development of an electroreductive alkene–aldehyde coupling enabled by rapid alternating polarity. This waveform allows the chemoselective generation of alkene radical anions from vinylarenes and heterocycles and directs their reactivity toward C–C bond formation with alkyl aldehydes to furnish structurally diverse secondary alcohols.
Keywords
Radical anions - Alkenes - Aldehydes - Electrosynthesis - Rapid alternating polarity - PhotochemistryPublication History
Received: 04 June 2025
Accepted after revision: 13 July 2025
Article published online:
20 August 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Li G, Huo X, Jiang X, Zhang W. Chem Soc Rev 2020; 49: 2060-2118
- 1b Bary G, Jamil MI, Arslan M. et al. J Saudi Chem Soc 2021; 25: 101260
- 2a Lund H, Degrand C. Tetrahedron Lett 1977; 18: 3593-3594
- 2b Shono T, Nishiguchi I, Ohmizu H. J Am Chem Soc 1977; 99: 7396-7397
- 2c Du J, Yoon TP. J Am Chem Soc 2009; 131: 14604-14605
- 3a Czyz ML, Horngren TH, Kondopoulos AJ. et al. Nat Catal 2024; 7: 1316-1329
- 3b Zhang B, Li T-T, Mao Z-C. et al. J Am Chem Soc 2024; 146: 1410-1422
- 4a House HO, Prabhu AV, Wilkins JM, Lee LF. J Org Chem 1976; 41: 3067-3076
- 4b van Leeuwen T, Buzzetti L, Perego LA, Melchiorre P. Angew Chem Int Ed 2019; 58: 4953-4957
- 5a Zeng L, Qin J-H, Lv G-F. et al. Chin J Chem 2023; 41: 1921-1930
- 5b Mattay J. Tetrahedron 1985; 41: 2405-2417
- 5c Speck F, Rombach D, Wagenknecht H-A. Beilstein J Org Chem 2019; 15: 52-59
- 6a Ng S-S, Ho C-Y, Schleicher KD, Jamison TF. Pure Appl Chem 2008; 80: 929-939
- 6b Nguyen KD, Park BY, Luong T, Sato H, Garza VJ, Krische MJ. Science 2016; 354: aah5133
- 6c Wei Y, Lin LQH, Lee BC, Koh MJ. Acc Chem Res 2023; 56: 3292-3312
- 7 Arnold DR, Maroulis AJ. J Am Chem Soc 1977; 99: 7355-7356
- 8a Seyfert F, Wagenknecht H-A. Synlett 2021; 32: 582-586
- 8b Seyfert F, Mitha M, Wagenknecht H-A. Eur J Org Chem 2021; 2021: 773-776
- 9 Cauwenbergh R, Das S. Synlett 2021; 33: 129-149
- 10 Glaser F, Kerzig C, Wenger OS. Angew Chem Int Ed 2020; 59: 10266-10284
- 11 Czyz ML, Taylor MS, Horngren TH, Polyzos A. ACS Catal 2021; 11: 5472-5480
- 12 Connell TU, Fraser CL, Czyz ML. et al. J Am Chem Soc 2019; 141: 17646-17658
- 13 Venditto NJ, Liang YS, El Mokadem RK, Nicewicz DA. J Am Chem Soc 2022; 144: 11888-11896
- 14 MacKenzie IA, Wang L, Onuska NPR. et al. Nature 2020; 580: 76-80
- 15 Ju T, Zhou Y-Q, Cao K-G. et al. Nat Catal 2021; 4: 304-311
- 16 Yue J-P, Xu J-C, Luo H-T. et al. Nat Catal 2023; 6: 959-968
- 17 Xu J-C, Yue J-P, Pan M. et al. Nat Commun 2025; 16: 1850
- 18 Zhang S-R, Yue J-P, Wang L-F. et al. Chem Commun 2024; 60: 13083-13086
- 19 Speckmeier E, Fischer TG, Zeitler K. J Am Chem Soc 2018; 140: 15353-15365
- 20 Tay NES, Lehnherr D, Rovis T. Chem Rev 2022; 122: 2487-2649
- 21a Zhu C, Ang NWJ, Meyer TH, Qiu Y, Ackermann L. ACS Cent Sci 2021; 7: 415-431
- 21b Li P, Qiu Y. Synlett 2024
- 22 Engels R, Schäfer HJ. Angew Chem, Int Ed Engl 1978; 17: 460-460
- 23 Janssen RG, Motevalli M, Utley JHP. Chem Commun 1998; 539-540
- 24 Kawamata Y, Baran PS. J Synth Org Chem, Jpn 2023; 81: 1020-1027
- 25 Alkayal A, Tabas V, Montanaro S, Wright IA, Malkov AV, Buckley BR. J Am Chem Soc 2020; 142: 1780-1785
- 26 Fors SA, Yap YJ, Malapit CA. Angew Chem Int Ed 2025; e202424865
- 27 Zhao Y, Qiu J, Li Z, Wang H, Fan M, Wang J. ChemSusChem 2017; 10: 2001-2007
- 28 Sheta AM, Mashaly MA, Said SB, Elmorsy SS, Malkov AV, Buckley BR. Chem Sci 2020; 11: 9109-9114
- 29 Hatch CE, Chain WJ. ChemElectroChem 2023; 10: e202300140
- 30 Franov LJ, Wilsdon TL, Czyz ML, Polyzos A. J Am Chem Soc 2024; 146: 29450-29461
- 31a Hayashi K, Griffin J, Harper KC, Kawamata Y, Baran PS. J Am Chem Soc 2022; 144: 5762-5768
- 31b Kawamata Y, Hayashi K, Carlson E. et al. J Am Chem Soc 2021; 143: 16580-16588
- 32a Kratena N, Marinic B, Donohoe TJ. Chem Sci 2022; 13: 14213-14225
- 32b Ji P, Duan K, Li M. et al. Chem Soc Rev 2024; 53: 6600-6624
- 33 Savéant J-MCC. Elements of Molecular and Biomolecular Electrochemistry: An Electrochemical Approach to Electron Transfer Chemistry. John Wiley & Sons Inc.; 2019
During the revision of this manuscript, Yu, Zhang and co-workers also reported a metallophotoredox-catalysed alkynylcarboxylation of alkenes with CO2 and alkynes: