Subscribe to RSS
DOI: 10.1055/a-2681-4862
FeCl3-Catalyzed Cascade Reactions for Construction of Cyclopentane-Fused Cyclized Spirobicyclized-Indole and Bis(indolyl)methane Scaffolds
Funding Information The authors acknowledge the National Institute of Technology (NIT) Sikkim for infrastructure support. Mr. Ravan Kumar acknowledges fellowship support from the NIT Sikkim.

Abstract
Ferric chloride (FeCl3) catalyzed synthesis of complex scaffolds of cyclopentane-fused cyclized and spirobi[cyclopenta[b]indole] and bis(indolyl)methanes (BIMs) was achieved from acetone and indoles via cascade reactions. Additionally, the formation of tetrahydro-3H-carbazole was observed from 2-methyl-indole. The reaction proceeded through condensation, addition, and intramolecular cyclization reactions. This protocol explored the target-oriented synthesis of three products from the same substrates by varying reaction conditions. This protocol strikingly features sustainable catalysis using mild and earth-abundant metals as catalysts, readily available substrates, and short reaction times, affording a variety of complex indole scaffolds with moderate to good yields. The synthesized products resemble natural and synthetic biologically active compounds containing cyclopenta[b]indole cores, highlighting their biological importance.
Keywords
Indole - Bisindoles - Cascade reactions - Spiro[bicyclopentane] - Cyclopentane - CyclizationPublication History
Received: 07 June 2025
Accepted after revision: 11 August 2025
Article published online:
27 August 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Vitaku E, Smith DT, Njardarson JT. J Med Chem 2014; 57: 10257
- 2a Singh GS. Chem Rev 2012; 112: 6104
- 2b Nack WA, Chen G. Synlett 2015; 26: 2505
- 2c Zhang B, Studer A. Chem Soc Rev 2015; 44: 3505
- 3a Higuchi VK, Kawasaki T. Nat Prod Rep 2007; 24: 843
- 3b Kochanowska-Karamyan AJ, Hamann MT. Chem Rev 2010; 110: 4489
- 3c Ishikura M, Abe T, Choshi T, Hibino S. Nat Prod Rep 2013; 30: 694
- 3d Marcos IS, Moro RF, Costales I, Basabe P, D´ıez D. Nat Prod Rep 2013; 30: 1509
- 3e Xu W, Gavia DJ, Tang Y. Nat Prod Rep 2014; 31: 1474
- 4a Olgen S. Mini-Rev Med Chem 2013; 13: 1700
- 4b Kaushik NK, Kaushik N, Attri P. et al. Molecules 2013; 18: 6620
- 4c Sidhu JS, Singla R, Mayank EY, Jaitak V. Med Chem 2015; 16: 160
- 5a Lim S, Sim K, Abdullah Z. et al. J Nat Prod 2007; 70: 1380
- 5b Jones SB, Simmons B, Mastracchio A, MacMillan DWC. Nature 2011; 475: 183
- 5c Dethe DH, Erande RD, Ranjan A. J Org Chem 2013; 78: 10106
- 5d Neelamegam R, Hellenbrand T, Schroeder FA, Wang C, Hooker JM. J Med Chem 2014; 57: 1488
- 5e Niu J, Qil J, Wang P, Liu C, Jin ming G. Nat Prod Bioprospect 2023; 13 (1) 3
- 6a Kong YC, Ng KH, Wat KH. et al. Planta Med 1985; 304
- 6b Kong C, Cheng K-F, Cambie RC, Waterman PG. J Chem Soc Chem Commun 1985; 47
- 7a Jordan JA, Gribble GW, Badenock JC. Tetrahedron Lett 2011; 52: 6772
- 7b Scarpi D, Faggi C, Occhiato EG. J Nat Prod 2017; 80: 2384
- 7c Chen H, Bai J, Fang Z-F. et al. J Nat Prod 2011; 74: 2438
- 8 N Engl J Med 2014; 371: 203-212
- 9a Sharpe RJ, Johnson JS. J Am Chem Soc 2015; 137: 4968-4971
- 9b Smith AB, Sunazuka T, Leenay TL, Kingery-Wood J. J Am Chem Soc 1990; 112: 8197-8198
- 10a Klimczyk S, Misale A, Huang X, Maulide N. Angew Chem Int Ed 2015; 54: 10365-10369
- 10b Sallam AA, Ayoub NM, Foudah AI, Gissendanner CR, Meyer SA, El-Sayed KA. Eur J Med Chem 2013; 70: 594-606
- 10c Qiao MF, Ji NY, Liu XH, Li K, Zhu QM, Xue QZ. Bioorg Med Chem Lett 2010; 20: 5677-5680
- 11a Ennis MD, Hoffman RL, Ghazal NB. et al. Bioorg Med Chem Lett 2003; 13: 2369-2372
- 11b Brambilla E, Meraviglia S, Moneta E. et al. Adv Synth Catal 2023; 365: 3958-3966
- 12a Aung TH, Shivamallu C, Kollur SP. Drug Discovery 2023; 17: e20dd1923
- 12b Zhang W, Liu Z, Li S. et al. Org Lett 2012; 14 (13) 3364-3367
- 13a Stratmann K, Moore RE, Bonjouklian R. et al. J Am Chem Soc 1994; 116: 9935
- 13b Richter JM, Ishihara Y, Masuda T. et al. J Am Chem Soc 2008; 130: 17938
- 14a Motoyama T, Hayashi T, Hirota H, Ueki M, Osada H. Chem Biol 2012; 19: 1611-1619
- 14b Nagumo Y, Motoyama T, Hayashi T. et al. ChemistrySelect 2017; 2: 1533-1536
- 15 Ngantchoua I, Nyassea B, Denierb C, Blonskib C, Hannaertc V, Schneider B. Bioorg Med Chem Lett 2010; 20: 3495-3498
- 16 Li H, Hughes RP, Wu J. J Am Chem Soc 2014; 136: 6288
- 17 Gérard S, Renzetti A, Lefevre B, Fontana A, Maria P, Sapi J. Tetrahedron 2010; 66: 3065
- 18 Palmieri A, Petrini M. J Org Chem 1863; 2007: 72
- 19 Zi W, Wu H, Toste FD. J Am Chem Soc 2015; 137: 3225
- 20 Prasad R, Sreenivas BY, Krishna GR, Kapavarapu R, Pal M. Chem Commun 2013; 49: 6716-6718
- 21 Ahmad T, Khan S, Ullah N. ACS Omega 2022; 7 (40) 35446-35485
- 22 Miyata O, Takeda N, Kimura Y. et al. Tetrahedron 2006; 62: 3629
- 23a Malona JA, Colbourne JM, Frontier A. Org Lett 2006; 8: 5661
- 23b Davies J, Leonori D. Chem Commun 2014; 50: 15171
- 24 Ganesan A, Heathcock CH. Tetrahedron Lett 1993; 34: 439
- 25a Haag BA, Zhang ZG, Li JS, Knochel P. Angew Chem Int Ed 2010; 49: 9513
- 25b Reddy AGK, Satyanarayana G. Synthesis 2015; 47: 1269
- 26a Ekebergh A, Karlsson I, Mete R, Pan Y, Börje A, Mårtensson J. Org Lett 2011; 13: 4458
- 26b Ekebergh A, Börje A, Mårtensson J. Org Lett 2012; 14: 6274
- 27 Balskus EP, Case RJ, Walsh CT. FEMS Microbiol Ecol 2011; 77: 322
- 28a Bergman J, Norrby P-O, Tilstam U, Venemalm L. Tetrahedron 1989; 45: 5549-5564
- 28b Black DSC, Craig DC, Kumar N. Tetrahedron Lett 1991; 32: 1587-1590
- 28c Noland WE, Brown CD, DeKruif RD. et al. Synth Commun 2018; 48: 1755-1765
- 28d Noland WE, Konkel MJ, Konkel LMC, Pearce BC, Barnes CL, Schlemper EO. J Org Chem 1996; 61: 451-454
- 29 Nadkarni SV, Nagarkar JM. Green Chem Lett Rev 2011; 4 (2) 121-126
- 30 Shelke GM, Rao VK, Tiwari RK, Chhikara BS, Parang K, Kumar A. RSC Adv 2013; 3: 22346
- 31 Bhattacharjee P, Sarma B, Bora U. Org Biomol Chem 2023; 21: 9275
- 32 Lai J, List B, Reid JP. Nat Commun 2025; 16: 3676
- 33 Noland WE, Kumar HV, Flick GC. et al. Tetrahedron 2017; 73: 3913-3922
- 34a Subba S, Saha S, Mandal S. SynOpen 2020; 4: 66
- 34b Subba S, Saha S. Synth Commun 2022; 52: 704
- 34c Subba S, Saha S, Mandal S, Ghosh AJ, Saha T. Tetrahedron Lett 2022; 106: 154081
- 34d Kumar R, Banerjee A, Saha S. Synlett 2025; 36: 679-682
- 35 Saha S, Mandal SK, Roy SC. Tetrahedron Lett 2008; 49: 5928-5930
- 36 Representative procedure for the synthesis of cyclopenta[b]indole, spirobi[cyclopenta[b]indole], bis(indolyl)-methane, and Tetrahydro-3H-carbazole cores: A solution of indole (0.5 mmol) in acetone (1 mL) was taken in an oven-dried round bottom flask, followed by the addition of FeCl3 (15 mol %, 20 mol %, 5 mol%, and 20 mol %) while stirring at room temperature (30 °C for cyclopenta[b]indole and spirobi[cyclopenta[b]indole], and 40 °C for spirobi[cyclopenta[b]indole]) under open-air conditions. The reaction was allowed to stir and monitored by checking TLC until the formation of the desired products. After completion of the reaction, acetone was evaporated under reduced pressure. The residue was purified without prior workup through column chromatography using a mixture of ethyl acetate in pet ether to get the desired product cyclopenta[b]indole, spirobi[cyclopenta[b]indole], bis(indolyl)-methane, and Tetrahydro-3H-carbazole cores, respectively
The HPS2-THRIVE Collaborative Group.