Synthesis, Table of Contents Synthesis DOI: 10.1055/a-2705-6957 Paper Published as part of the Special Topic Dedicated to Prof. Paul Knochel Lanthanum(III)-Mediated Dearomative Alkylation of Quinolines Authors Author Affiliations Muzhen Mao 1 The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, China Wenwen Lou 2 Department of Mathematics, Shandong University, Jinan, China Haoer Guna 1 The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, China Yi-Hung Chen 1 The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, China Recommend Article Abstract Buy Article(opens in new window) All articles of this category(opens in new window) Abstract We report the lanthanum(III)-mediated dearomative alkylation of quinoline derivatives that enables direct C2-selective functionalization under mild conditions. This single-step protocol utilizes alkyllithium reagents in the presence of LaCl₃•2LiCl and LiAlH₄ to effect regioselective C–C bond formation while simultaneously reducing the quinoline to afford diverse 2-alkyl-substituted tetrahydroquinolines (THQs). The method displays broad substrate scope, tolerating various alkyl groups and heteroaromatic scaffolds, including acridine and quinoxaline. Mechanistic studies support a stepwise C2-alkylation and C3-hydride delivery pathway. Notably, this strategy allows for rapid access to THQ frameworks prevalent in bioactive natural products and pharmaceutical agents. The use of an lanthanide reagent and mild, scalable conditions highlights the practicality of this transformation. This work establishes a versatile approach to THQ synthesis and expands the repertoire of lanthanide-mediated dearomative functionalization. Keywords KeywordsQuinoline - Lanthanum - alkylation - Dearomatization - Rare earth Full Text References References 1a Muthukrishnan I, Sridharan V, Menéndez JC. Chem Rev 2019; 119: 5057 1b Sridharan V, Suryavanshi PA, Menéndez JC. Chem Rev 2011; 111: 7157 1c Khadem S, Marles RJ. Nat Prod Res 2023; 39: 182 2 Witherup KM, Ransom RW, Graham AC. J Am Chem Soc 1995; 117: 6682 3 Rakotoson JH, Fabre N, Jacquemond-Collet I. Planta Med 1998; 64: 762 4 Jacquemond-Collet I, Hannedouche S, Fabre N. Phytochemistry 1999; 51: 1167 5 Lovering F, Bikker J, Humblet C. J Med Chem 2009; 52: 6752 6 Imanishi S, Kimura T, Arita M. Cardiovasc Drug Rev 1991; 9: 223 7 Galdino DRPM, Barreto DMRMJ, Galdino SL. Mini-Rev Med Chem 2013; 13: 493 8a Keck D, Vanderheiden S, Brase S. Eur J Org Chem 2006; 2006: 4916 8b Ori M, Toda N, Takami K, Tago K, Kogen H. Tetrahedron 2005; 61: 2075 8c Steinhagen H, Corey EJ. Org Lett 1999; 1: 823 8d Back TG, Wulff JE. Angew Chem Int Ed 2004; 43: 6493 9 Nammalwar B, Bunce RA. Molecules 2014; 19: 204 10a Povarov LS. Russ Chem Rev 1967; 36: 656 10b Paiva WF, Rego YF, Fátima A. Synthesis 2022; 54: 3162 11 El-Shahat M. J Heterocycl Chem 2022; 59: 399 12a Adam R, Cabrero-Antonino JR, Spannenberg A, Junge K, Jackstell R, Beller M. Angew Chem Int Ed 2017; 56: 3216 12b Zhang L, Qiu R, Xue X. et al. Adv Synth Catal 2015; 357: 3529 12c Wu J, Barnard JH, Zhang Y, Talwar D, Robertson CM. Chem Commun 2013; 49: 7052 12d Abarca B, Adam R, Ballesteros R. Org Biomol Chem 1826; 2012: 10 12e Ao L, Zhang Q, Li S-S, Liu X, Liu Y-M, Cao Y. Adv Synth Catal 2015; 357: 753 13a Chen L, Wilder PT, Drennen B. et al. Org Biomol Chem 2016; 14: 5505 13b Carter N, Li X, Reavey L, Meijer AJHM, Coldham L. Chem Sci 2018; 9: 1352 13c Wang S-G, Zhang W, You S-L. Org Lett 2013; 15: 1488 13d Qiao X, Zhang Z, Bao Z. et al. RSC Adv 2014; 4: 42566 13e Qiao X, El-Shahat M, Ullah B. et al. Tetrahedron Lett 2017; 58: 2050 14a Gandhamsetty N, Joung S, Park S-W, Park S, Chang S. J Am Chem Soc 2014; 136: 16780 14b Ding F, Zhang Y, Zhao R. et al. Chem Commun 2017; 53: 9262 14c Altiti AS, Cheng KF, He M, Al-Abed Y. Chem Eur J 2017; 23: 10738 15 Zhang J, Chen Z, Chen M. et al. J Org Chem 2024; 89: 887 16 Gandhamsetty N, Park S, Chang S. Synlett 2017; 28: 2396 17 Zhuo C-X, Zhang W, You S-L. Angew Chem Int Ed 2012; 51: 12662 18 Qian C, Huang T. J Organomet Chem 1997; 548: 143 19a Gagne MR, Marks TJ. J Am Chem Soc 1989; 111: 4108 19b Li Y, Marks TJ. Organometallics 1996; 15: 3770 19c Gribkov DV, Hultzsch KC, Hampel F. J Am Chem Soc 2006; 128: 3748 19d Nguyen HN, Lee H, Audörsch S. et al. Organometallics 2018; 37: 4358 20 Dzudza A, Marks TJ. Chem Eur J 2010; 16: 3403 21a Wang H, Wu X, Yang Y, Nishiura M, Hou Z. Angew Chem Int Ed 2020; 59: 7173 21b Nishiura M, Guo F, Hou Z. Acc Chem Res 2015; 48: 2209 22 Sun D, Rajeshkumar T, Li Y-F. et al. Org Lett 2023; 25: 6730 23 Yang H-Y, Rajeshkumar T, Liu S-S. et al. J Am Chem Soc 2024; 146: 25361 24a Krasovskiy A, Kopp F, Knochel P. Angew Chem Int Ed 2006; 45: 497 24b Benischke AD, Anthore-Dalion L, Berionni G, Knochel P. Angew Chem Int Ed 2017; 56: 16390 25a Sun D, Xu J, Liu G, Chen Y-H. Eur J Org Chem 2024; e202400540 25b Dai X-L, Ran J-D, Rajeshkumar T. et al. Org Lett 2023; 25: 3060 25c Sun D, Fan D, Mao M, Lv Z, Chen Y-H, Wei B. Org Lett 2025; 27: 5044 26 Bohlmann F. Chem Ber 1952; 85: 390 Supplementary Material Supplementary Material Supplementary Material (PDF)