Subscribe to RSS
DOI: 10.1055/a-2716-8417
An Efficient and Safe Protocol for In Situ Generation of Azides for Click Chemistry: Late-Stage Application toward Synthesis of 1,2,3-Triazole-Embedded Uridines
Authors

Abstract
Nucleosides with heterocyclic side chains, such as 1,2,3-triazoles, are a well-known class of biologically active molecules. In this respect, alkyne nucleosides were found to be efficient synthons for synthesizing 1,2,3-triazoles via click chemistry. Although the selective propargylation of a nucleoside is challenging, it can be achieved by careful selection of suitable hydroxy protecting groups. On the other hand, the in situ generation of azides from the corresponding amines is a safe protocol for click chemistry, but subsequent coherent reaction conditions play a crucial role in the success of 1,2,3-triazole synthesis in a nucleoside scaffold. Herein, we describe such a safe and efficient protocol for the synthesis of 1,2,3-triazole side chain-containing nucleoside scaffold by selective propargylation of uridine. This strategy afforded access to various, previously nonreported 1,2,3-triazole-containing uridine scaffolds and opens up new avenues for such late-stage modifications in other nucleosides.
Keywords
Bacterial resistance to antibiotics - Nucleoside-based drugs - Click chemistry - 1,2,3-Triazoles - In situ azide generation - Alkyne nucleosides - Nucleosides of 1,2,3-triazole scaffold of uridinePublication History
Received: 13 August 2025
Accepted after revision: 06 October 2025
Accepted Manuscript online:
06 October 2025
Article published online:
14 November 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Urban-Chmiel R, Marek A, Stepien-Pysniak D. et al. Antibiotics 2022; 1079
- 1b Magiorakos A-P, Srinivasan A, Carey RB. et al. Clin Microbiol Infect 2012; 18: 268
- 1c Holmes AH, Moore LSP, Sundsfjord A. et al. Lancet 2016; 38: 176
- 1d Duin DV, Paterson DL. Infect Dis Clin NoRTh AmRTRT 2016; 30: 377
- 2a Osada H. J Antibiot 2019; 72: 855
- 2b Serpi M, Ferrari V, Pertusati F. J Med Chem 2016; 59: 10343
- 2c Thomson JM, Lamont IL. Front Microbiol 2019; 10: 952
- 2d Zhang M, Kong L, Gong R. et al. Microb Cell Factories 2022; 21: 2
- 2e Mathew A, Cissell R, Liamthong S. Foodborne Pathog Dis 2007; 4: 11
- 2f Chen W, Qi J, Wu P. et al. J Ind Microbiol Biotechnol 2016; 43: 401
- 2g Stambaský J, Hocek M, Kocovský P. Chem Rev 2009; 109: 6729 and references therein
- 3a Lolk L, Pøhlsgaard J, Jepsen AS. et al. Med Chem 2008; 51: 4957 and reference therein
- 3b Dobie C, Montgomery AP, Szabo R, Yu H, Skropeta D. RSC Med Chem 2021; 12: 1680
- 4a Guan Q, Xing S, Wang L. et al. J Med Chem 2024; 67: 7788
- 4b Agalave SG, Maujan SR, Pore VS. Chem Asian J 2011; 6: 2696
- 4c Zeidan MA, Alkabbani MA, Giovannuzzi S. et al. J Med Chem 2025; 68: 8873
- 4d Dheer D, Singh V, Shankar R. Bioorg Chem 2017; 71: 30
- 4e Schulze B, Schubert US. Chem Soc Rev 2014; 43: 2522
- 4f Matin MM, Matin P, Rahman MR. et al. Front Mol Biosci 2022; 9: 864286
- 5a Agouram N. Med Chem Res 2023; 32: 2458
- 5b Vala DP, Vala RM, Patel HM. ACS Omega 2022; 7: 36945
- 5c El-Damasya AK, Kima HJ, Faisala M. et al. J Med Chem 2025; 68: 3764
- 5d Das U, Shanavas S, Jayaprakash M. et al. J Med Chem 2025; 68: 2764
- 5e Alam MM. ArchPham 2022; 355: 2100158
- 6a Lv S, Zhou H, Yu X. et al. Commun Chem 2019; 2: 69
- 6b Varun BV, Vaithegi K, Yi S, Park SB. Nat Commun 2020; 11: 6308
- 6c Vaithegi K, Yi S, Lee JH, Varun BV, Park SB. Commun Chem 2023; 6: 112
- 6d Kushawaha AK, Jaiswal AK, Kumar P. et al. J Med Chem 2025; 68: 10722
- 7 Liu C, Jalagam PR, Feng J. et al. J Med Chem 2022; 65 (16) 11084
- 8a Barondes SH, Castronovo V, Cooper DNW. et al. Cell 1994; 76: 597
- 8b Verkerke H, Dias-Baruffi M, Cummings RD, Arthur CM, Stowell SR. Methods Mol Biol 2022; 2442: 1
- 8c Bouffette S, Botez I, De Ceuninck F. Trends Pharmacol Sci 2023; 44: 519
- 9a Lin X, Liang C, Zou L. et al. Eur J Med Chem 2021; 214: 113233
- 9b Olga V, Andreeva OV, Garifullin BF. et al. Mol Divers 2021; 25: 473
- 9c Elkanzia NAA, El-Sofanyc WI, Gaballahc ST, Mohamedd AM, Kutkate O, El-Sayedc WA. Russ J Gen Chem 2019; 89: 1896
- 10a Bock VD, Hiemstra H, van Maarseveen JH. Eur J Org Chem 2006; 51
- 10b Devaraj NK, Finn MG. Chem Rev 2021; 121: 6697
- 11a Ferro V, Mocerino M, Stick RV, Tilbrook DMG. Aust J Chem 1988; 41: 813
- 11b Gelas J, Horton D. Heterocycles 1981; 16: 1587
- 11c Manzo E, Barone G, Michelangelo P. Synelett 2000; 887
- 12a Panja C, Puttaramu JV, Chandran TK. et al. J Fluor Chem 2020; 236: 109516
- 12b Ayothiraman R, Gangu AS, Bandaru D. et al. Org Process Res Dev 2020; 24: 207
- 12c Barral K, Moorhouse AD, Moses JE. Org Lett 2007; 9: 1809
- 13 David CJ, Theodore SW. Org Lett 2004; 6: 4643