Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis
DOI: 10.1055/a-2733-1592
DOI: 10.1055/a-2733-1592
Paper
Electrochemically Catalyzed Decarboxylative Borylation of (Hetero)Aryl Carboxylic Acids
Authors
Supported by: National Natural Science Foundation of China 22202021,22372015
Supported by: Changzhou Vocational Institute of Engineering 11130900122004
Funding Information This work was financially supported by National Natural Science Foundation of China (NSFC22202021 and 22372015), the Young Backbone Teachers Fund of Jiangsu Qinglan Project, and the School research fund of Changzhou Vocational Institute of Engineering (11130900122004).

Abstract
A straightforward and efficient electrochemical method for the decarboxylative borylation of (hetero)aryl carboxylic acids has been outlined. This metal-/base-/oxidant-free strategy enables efficient access to arylboronate esters, demonstrating a broad substrate scope (20 examples) with yields of up to 62% while maintaining exceptional atom- and step-economy.
Keywords
Decarboxylation - Borylation - Electrochemical synthesis - Arylboronate esters - Arylcarboxylic acidsPublication History
Received: 30 April 2025
Accepted after revision: 27 October 2025
Accepted Manuscript online:
27 October 2025
Article published online:
14 November 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Wang X, Xu X, Wang Z, Fang P, Mei T. Chin J Org Chem 2020; 40: 3738
- 2a Miyaura N, Suzuki A. Chem Rev 1995; 95: 2457
- 2b Johansson-Seechurn CCC, Kitching MO, Colacot TJ, Snieckus V. Angew Chem, Int Ed 2012; 51: 5062
- 2c Lacina K, Skladal P, James TD. Chem Cent J 2014; 8: 60
- 2d Li D-J, Chen Y, Liu Z. Chem Soc Rev 2015; 44: 8097
- 2e Sun X, Zhai W, Fossey JS, James TD. Chem Commun 2016; 52: 3456
- 2f Fyfe JWB, Watson AJB. Chem 2017; 3: 31
- 2g Chen Y, Chen Q, Zhang S. et al. Org Biomol Chem 2025; 23: 2111
- 3a Wang M, Shi Z. Chem Rev 2020; 120: 7348
- 3b Neeve EC, Geier SJ, Mkhalid IAI, Westcott SA, Marder T. Chem Rev 2016; 116: 9091
- 3c Chow WK, Yuen OY, Choy PY. et al. RSC Adv 2013; 3: 12518
- 3d Mkhalid IAI, Barnard JH, Marder TB. Chem Rev 2010; 110: 890
- 4a Li K-X, Li R-X, Cui Y-M, Liu C-W. Org Biomol Chem 2024; 22: 1693
- 4b Hu J, Zhao Y, Liu J, Zhang Y, Shi Z. Angew Chem, Int Ed 2016; 55: 8718
- 4c Shi S, Szostak M. ACS Omega 2019; 4: 4901
- 4d Bie F, Liu X, Shi Y. et al. J Org Chem 2020; 85: 15676
- 4e Dow NW, Pedersen PS, Chen TQ. et al. J Am Chem Soc 2022; 144: 6163
- 5a Pu X, Hu J, Zhao Y, Shi Z. ACS Catal 2016; 6: 6692
- 5b Guo L, Rueping M. Chem – Eur J 2016; 22: 16787
- 6 Liu C, Ji CL, Hong X, Szostak M. Angew Chem Int Ed 2018; 57: 16721
- 7 Zhang W, Bie F, Ma J, Zhou F, Szostak M, Liu C. J Org Chem 2021; 86: 17445
- 8a Zhou J-Y, Tao S-W, Liu R-Q, Zhu Y-M. J Org Chem 2019; 84: 11891
- 8b Zhou J-Y, Liu R-Q, Wang C-Y, Zhu Y-M. J Org Chem 2020; 85: 14149
- 9 Yan M, Kawamata Y, Baran PS. Chem Rev 2017; 117: 13230
- 10 Mohle S, Zirbes M, Rodrigo E, Gieshoff T, Wiebe A, Waldvogel SR. Angew Chem 2018; 130: 6124
- 11 Jiang Y-Y, Xu K, Zeng C-C. Chem Rev 2018; 118: 4485
- 12 Qiu Y, Struwe J, Ackermann L. Synlett 2019; 30: 1164
- 13 Leech MC, Lam K. Acc Chem Res 2020; 53: 121
- 14 Hong H, Li Y, Chen L. et al. J Org Chem 2019; 84: 5980
- 15a Du L-L, Zhang H. Chin J Org Chem 2023; 43: 1726
- 15b Moniruzzaman M, Afrin S, Ali MK. Asian J Org Chem 2023; 12: e202300090
- 15c Cheung T-L, Lyu H. ChemElectroChem 2025; 12: e202400560
- 16a Kong X-Q, Liu Q-W, Chen Y-Y. et al. Green Chem 2024; 26: 3435
- 16b Kong X-Q, Chen Y-Y, Chen X-H. et al. Nat Commun 2023; 14: 6933
- 16c Kong X-Q, Chen Y-Y, Zhang S-Q. et al. Chem Sci 2025; 16: 14161
- 17 Dai J-J, Teng X-X, Fang W, Xu J, Xu H-J. Chin Chem Lett 2022; 33: 1555
- 18 Barton L-M, Chen L, Blackmonda D-G, Baran P-S. PNAS 2021; 118: e2109408118