Subscribe to RSS
DOI: 10.1055/a-2733-3887
Reductive Deoxygenation of Ketones with Silanes Catalyzed by Proton-Exchanged Montmorillonite to Olefin or Methylene Compounds
Authors
This work was supported by JSPS KAKENHI grant number 23K04756.

Abstract
We have developed a novel process for the reductive deoxygenation of ketones using silanes, which affords either olefin or methylene products. The reaction is catalyzed by proton-exchanged montmorillonite, a solid acid catalyst. Notably, cyclic or linear aliphatic ketones with carbonyl groups flanked by two primary carbon atoms selectively yield olefins. 1,2-Dibromides can also be produced directly from the ketones by adding bromine, without isolating the olefin intermediates. Therefore, 1,2-dibromides can be easily synthesized, even via volatile olefins that are difficult to handle. Meanwhile, aliphatic ketones bordered by secondary alkyl groups, diaryl ketones, cyclic benzoyl ketones, and aryl methyl ketones yield only methylene compounds.
Keywords
Deoxygenation - Silane - Proton-exchanged montmorillonite - Ketone - Olefin - 1,2-Dibromide - Methylene compoundPublication History
Received: 13 September 2025
Accepted after revision: 27 October 2025
Accepted Manuscript online:
27 October 2025
Article published online:
21 November 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Rogers KA, Zheng Y. ChemSusChem 2016; 9: 1750
- 1b Li D, Xin H, Du X, Hao X, Liu Q, Hu C. Sci Bull 2015; 60: 2096
- 1c Praikaew W, Chuseang J, Prameswari J. et al. ChemPlusChem 2024; 89: e202400075
- 2 Martin EL. Org React 2011; 7: 155
- 3 Lewis DE. The Wolff-Kishner Reduction and Related Reactions: Discovery and Development. Amsterdam: Elsevier; 2019
- 4a Fernandes TA, Bernardo JR, Fernandes AC. ChemCatChem 2015; 7: 1177
- 4b Sousa SCA, Fernandes TA, Fernandes AC. Eur J Org Chem 2016; 18: 3109
- 4c Wang W, Hu Y, Yang J. et al. Org Lett 2024; 40: 8468
- 4d Volkov A, Gustafson KPJ, Tai C-W, Verho O, Bäckvall J-E, Adolfsson H. Angew Chem Int Ed 2015; 54: 5122
- 4e Gui R, Li C-J. Chem Commun 2022; 58: 10572
- 4f Argouarch G. New J Chem 2019; 43: 11041
- 4g Yang Z, Zhu X, Yang S, Cheng W, Zhang X, Yang Z. Adv Synth Catal 2020; 362: 5496
- 4h Bernardo JR, Fernandes AC. Green Chem 2016; 18: 2675
- 4i Fernandes TA, Fernandes AC. ChemCatChem 2015; 7: 3503
- 5 Kira M, Hino T, Sakurai H. Chem Lett 1992; 21: 555
- 6 Mehta M, Holthausen MH, Mallov I. et al. Angew Chem 2015; 127: 8368
- 7 Thorwart T, Roth D, Greb L. Chem Eur J 2021; 27: 10422
- 8a Kotkar D, Ghosh PK. J Chem Soc, Chem Commun 1986; 650
- 8b Reddy CR, Vijayakumar B, Iyengar P, Nagendrappa G, Prakash BSJ. J Mol Catal A: Chem 2004; 223: 117
- 8c Varma RS. Tetrahedron 2002; 7: 1235
- 8d Francesco N, Cacciuttolo B, Pascu O, Aymonier C, Pucheault M, Antoniotti S. RSC Adv 2016; 6: 19807
- 8e Dasgupta S, Török B. Org Prep Proced Int 2008; 40: 1
- 9 Onaka M, Higuchi K, Nanami H, Izumi Y. Bull Chem Soc Jpn 1993; 66: 2638
- 10 Tanaka Y, Shibata S, Hashimoto K, Masui Y, Onaka M. Synlett 2022; 33: 2026
- 11 Tandiary MA, Masui Y, Onaka M. Tetrahedron Lett 2014; 55: 4160