Subscribe to RSS
DOI: 10.1055/a-2733-4012
Photocatalytic Regioselective Hydroboration of Indoles and Benzofurans with N-Heterocyclic Carbene Boranes
Authors
Financial support from the National Natural Science Foundation of China (grant no. 22371180) is acknowledged.

Dedication
Dedicated to Professor Franziska Schoenebeck on the occasion of her being awarded the 2025 Women in Chemistry Award.
Abstract
Dearomative hydroboration of arenes using nucleophilic boryl radicals provides a powerful strategy for converting flat, abundant arenes into valuable, three-dimensional organoboron architectures. While such reactions are well established for electron-deficient arenes, the analogous transformation of electron-rich heteroarenes remains challenging due to a polarity mismatch. Herein, we report a photocatalytic approach that enables the regioselective, dearomative hydroboration of both electron-rich and electron-deficient indoles and benzofurans using N-heterocyclic carbene boranes. Density functional theory calculations indicate that the C2 addition of the boryl radical is kinetically favored over the C3 addition, and that the addition step becomes irreversible due to a subsequent, low-barrier hydrogen-atom-transfer event.
Keywords
Photocatalysis - Boryl radical - Hydroboration - Dearomatization - Organoboron - N-heterocyclic carbene boranePublication History
Received: 22 September 2025
Accepted after revision: 27 October 2025
Accepted Manuscript online:
27 October 2025
Article published online:
19 November 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Lennox AJJ, Lloyd-Jones GC. Chem Soc Rev 2014; 43: 412
- 1b Diaz DB, Yudin AK. Nat Chem 2017; 9: 731
- 1c Mellerup SK, Wang S. Chem Soc Rev 2019; 48: 3537
- 1d Zhao Q, Dewhurst RD, Braunschweig H, Chen X. Angew Chem Int Ed 2019; 58: 3268
- 1e Wang H, Jing C, Noble A, Aggarwal VK. Angew Chem Int Ed 2020; 59: 16859
- 1f Wang M, Shi Z. Chem Rev 2020; 120: 7348
- 1g Kong L, Cui C. Synlett 2021; 32: 1316
- 1h Yang K, Song Q. Acc Chem Res 2021; 54: 2298
- 1i Marotta A, Adams CE, Molloy JJ. Angew Chem Int Ed 2022; 61: e202207067
- 1j Du Y, Dong J, Xu C, Pan X. Sci China Chem 2023; 66: 3467
- 1k Hollister KK, Wentz KE, Gilliard RJ. Acc Chem Res 2024; 57: 1510
- 1l Guo Y, Zu B, Du Chen C, He C. Chin J Chem 2024; 42: 2401
- 1m António JPM, Roque IL, Santos FMF, Gois PMP. Acc Chem Res 2025; 58: 673
- 1n Chen C, Ding Z, Gao Y. et al. Sci China Chem 2025; 68: 3927
- 1o Liu Z, Lyu H. Eur J Org Chem 2025; 28: e202500223
- 1p Di J, Han S, Chen P. Chin J Chem 2025; 43: 219
- 2a Friese FW, Studer A. Chem Sci 2019; 10: 8503
- 2b Taniguchi T. Eur J Org Chem 2019; 2019: 6308
- 2c Tian Y-M, Guo X-N, Braunschweig H, Radius U, Marder TB. Chem Rev 2021; 121: 3561
- 2d Peng T-Y, Zhang F-L, Wang Y-F. Acc Chem Res 2022; 56: 169
- 2e Phang YL, Jin J-K, Zhang F-L, Wang Y-F. Chem Commun 2024; 60: 4275
- 2f Lian C, Zhang J, Qiu D, Mo F. Chin J Chem 2025; 43: 104
- 3a Ren S-C, Zhang F-L. et al. J Am Chem Soc 2017; 139: 6050
- 3b Zhou N, Yuan XA, Zhao Y, Xie J, Zhu C. Angew Chem Int Ed 2018; 57: 3990
- 3c Shimoi M, Watanabe T, Maeda K, Curran DP, Taniguchi T. Angew Chem Int Ed 2018; 57: 9485
- 3d Ren S-C, Zhang F-L, Xu A-Q. et al. Nat Commun 2019; 10: 1934
- 3e Dai W, Geib SJ, Curran DP. J Am Chem Soc 2019; 141: 12355
- 3f Xu W, Jiang H, Leng J, Ong HW, Wu J. Angew Chem Int Ed 2020; 59: 4009
- 3g Xia PJ, Song D, Ye ZP. et al. Angew Chem Int Ed 2020; 59: 6706
- 3h Dai W, Geib SJ, Curran DP. J Am Chem Soc 2020; 142: 6261
- 3i Qi J, Zhang FL, Jin JK. et al. Angew Chem Int Ed 2020; 59: 12876
- 3j Zhu C, Dong J, Liu X. et al. Angew Chem Int Ed 2020; 59: 12817
- 3k Xie F, Mao Z, Curran DP, Liang H, Dai W. Angew Chem Int Ed 2023; 62: e202306846
- 3l Tao H, Lyu H. Chin J Chem 2024; 42: 2804
- 3m Xie Y, Zhang R, Chen ZL. et al. Adv Sci 2024; 11: 2306728
- 3n Jian Y, Wen F, Shang J. et al. Org Chem Front 2024; 11: 149
- 3o Zhang Q, Xu W, Liu Q. et al. Nat Commun 2024; 15: 4371
- 3p Xu W, Xu Q, Liu M. et al. J Am Chem Soc 2025; 147: 35019
- 3q Wang X, Zhang P, Yang Z. et al. Nat Chem 2025; 17: 663
- 3r Ye Z, Kwok CY, Lam SL, Wu L, Lyu H. J Am Chem Soc 2025; 147: 14915
- 3s Lin J, Zhang P, Lou X, Lin Z, Lyu H, Quan Y. J Am Chem Soc 2025; 147: 18397
- 3t Park C, Gi S, Yoon S, Kwon SJ, Lee S. Org Chem Front 2025; 12: 1874
- 3u Chen S-S, Zheng Y, Xing Z-X, Huang H-M. Nat Commun 2025; 16: 3724
- 4a Curran DP, Solovyev A. et al. Angew Chem Int Ed 2011; 50: 10294
- 4b Ueng S-H, Makhlouf Brahmi M. et al. J Am Chem Soc 2008; 130: 10082
- 4c Pan X, Lacôte E, Lalevée J, Curran DP. J Am Chem Soc 2012; 134: 5669
- 4d Pan X, Vallet A-L, Schweizer S. et al. J Am Chem Soc 2013; 135: 10484
- 4e Telitel S, Vallet A-L, Schweizer S. et al. J Am Chem Soc 2013; 135: 16938
- 5a Walton JC. Angew Chem Int Ed 2009; 48: 1726
- 5b Taniguchi T. Chem Soc Rev 2021; 50: 8995
- 5c Liu X, Chen X, Zhou X, He J. Synthesis 2025; 57: 2539
- 5d Xuan J, Xie Y. Synthesis 2025; 57: 2551
- 6a Shang W, Su SN. et al. Angew Chem Int Ed 2020; 60: 385
- 6b Li N, Yang S, Huang Z, Pan X. Macromolecules 2021; 54: 6000
- 6c Wan T, Capaldo L, Ravelli D. et al. J Am Chem Soc 2022; 145: 991
- 6d Guo X, Zhang Y, Lai X, Pang Y, Xue XS. Angew Chem Int Ed 2024; 64: e202415715
- 6e Jiang Y, Yin Y, Jiang Z. Chin J Org Chem 2024; 44: 1733
- 6f Koo J, Kim W, Jhun BH. et al. J Am Chem Soc 2024; 146: 22874
- 6g Wan T, Ciszewski ŁW, Ravelli D, Capaldo L. Org Lett 2024; 26: 5839
- 7a Kawamoto T, Geib SJ, Curran DP. J Am Chem Soc 2015; 137: 8617
- 7b Kawamoto T, Oritani K, Kawabata A, Morioka T, Matsubara H, Kamimura A. J Org Chem 2020; 85: 6137
- 7c Jiao Z, Jaunich KT, Tao T. et al. Angew Chem Int Ed 2024; 63: e202405779
- 8a Xu A-Q, Zhang F-L, Ye T, Yu Z-X, Wang Y-F. CCS Chem 2019; 1: 504
- 8b Wang C-L, Wang J, Jin J-K. et al. Science 2023; 382: 1056
- 8c Wang J, Phang YL, Yu YJ. et al. Angew Chem Int Ed 2024; 63: e202405863
- 9a Kim JH, Constantin T. et al. Nature 2021; 595: 677
- 9b Choi W, Kim M, Lee K, Park S, Hong S. Org Lett 2022; 24: 9452
- 9c Wang Z, Chen J, Lin Z, Quan Y. Chem-Eur J 2022; e202203053
- 9d Li Y, Zhou Y, Zhou D. et al. J Am Chem Soc 2024; 146: 21428
- 9e Jiang H-W, Yu W-L, Wang D, Xu P-F. ACS Catal 2024; 14: 8666
- 9f Buettner CS, Stavagna C, Tilby MJ. et al. J Am Chem Soc 2024; 146: 24042
- 9g Jiang H-W, Qin H-N, Wang A-L, Zhang R, Xu P-F. Org Lett 2024; 26: 9282
- 10a Roberts BP. Chem Soc Rev 1999; 28: 25
- 10b Parsaee F, Senarathna MC, Kannangara PB, Alexander SN, Arche PDE, Welin ER. Nat Rev Chem 2021; 5: 486
- 10c Ruffoni A, Mykura RC, Bietti M, Leonori D. Nat Synth 2022; 1: 682
- 11a Shi Q, Xu M, Chang R. et al. Nat Commun 2022; 13: 4453
- 11b Pang Y, Wang E, Ye J. Angew Chem Int Ed 2025; 64: e202508379
- 12a Mikhael M, Alektiar SN, Yeung CS, Wickens ZK. Angew Chem Int Ed 2023; 62: e202303264
- 12b Hui LW, Phang YL, Ye CY. et al. Angew Chem Int Ed 2025; 64: e202506771
- 13 Xiao W, Zhang J, Wu J. ACS Catal 2023; 13: 15991
- 14 Miao Y-Q, Pan Q-J, Kang J-X, Dai X, Liu Z, Chen X. Org Chem Front 2024; 11: 1462
- 15a Gentry EC, Knowles RR. Acc Chem Res 2016; 49: 1546
- 15b Murray PRD, Cox JH, Chiappini ND. et al. Chem Rev 2021; 122: 2017
- 16 Garreau M, Le Vaillant F, Waser J. Angew Chem Int Ed 2019; 58: 8182
For selected reviews, see:
For selected reviews, see:
For selected examples, see:
For a review, see:
For selected examples, see:
For selected reviews on NHC-boryl radicals. See:
For selected examples, see:
For selected examples, see:
For selected examples, see:
For selected reviews, see:
For a recent review, see:
For selected reviews, see: