Synthesis
DOI: 10.1055/a-2742-1904
Short Review

Metal-Free Reagents and Catalysts for C–C Multiple Bond Reduction

Authors

  • Benjamin R. G. Bissinger

    1   Faculty for Chemistry and Biochemistry, Ruhr-Universität Bochum, Bochum, Germany (Ringgold ID: RIN9142)
  • Kirti Devi

    1   Faculty for Chemistry and Biochemistry, Ruhr-Universität Bochum, Bochum, Germany (Ringgold ID: RIN9142)
  • Dang H. Vu

    1   Faculty for Chemistry and Biochemistry, Ruhr-Universität Bochum, Bochum, Germany (Ringgold ID: RIN9142)
    2   Fakultät für Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, Wuppertal, Germany (Ringgold ID: RIN26603)
  • Asad Shehzad

    1   Faculty for Chemistry and Biochemistry, Ruhr-Universität Bochum, Bochum, Germany (Ringgold ID: RIN9142)
    3   Max-Planck Institut für Kohlenforschung, Max-Planck Institut für Kohlenforschung, Mühlheim an der Ruhr, Germany
  • Mario P. Wiesenfeldt

    1   Faculty for Chemistry and Biochemistry, Ruhr-Universität Bochum, Bochum, Germany (Ringgold ID: RIN9142)
    2   Fakultät für Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, Wuppertal, Germany (Ringgold ID: RIN26603)
    3   Max-Planck Institut für Kohlenforschung, Max-Planck Institut für Kohlenforschung, Mühlheim an der Ruhr, Germany

The authors are grateful for funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy – EXC 2033 – 390677874 – RESOLV, the state of NRW (Center of Solvation Science “ZEMOS”), the Fonds der Chemischen Industrie (FCI, Liebig Fellowship for MPW), and Umicore (donation of precious metals) for funding.


Graphical Abstract

Abstract

Organic reductants are increasingly important for the reduction of C–C multiple bonds, as they avoid scarce platinum-group metals and broadly tolerate Lewis-basic motifs common in medicinal chemistry. Diverse reduction mechanism via hydride transfer, protonation, hydroboration, frustrated Lewis pair-mediated H₂ activation, diimide-mediated hydrogen transfer, and photoinduced electron, energy, or hydrogen atom transfer provide distinct and often complementary reactivity orders enabling predictable reductions even in complex molecules. This review discusses the main mechanisms and categorizes them based on the reducible substrate classes and the tolerance of Lewis-basic motifs, highlighting methods with particular relevance to medicinal chemistry applications.



Publication History

Received: 19 September 2025

Accepted after revision: 27 October 2025

Article published online:
26 November 2025

© 2025. Thieme. All rights reserved.

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany