Subscribe to RSS
DOI: 10.1055/s-0028-1109529
© Georg Thieme Verlag KG Stuttgart · New York
Kataraktextraktion und Blaulicht – Wirkung auf die Netzhaut
Cataract Extraction and Blue Light – Impact on the RetinaPublication History
Eingegangen: 31.3.2009
Angenommen: 25.5.2009
Publication Date:
14 July 2009 (online)

Zusammenfassung
Dieser Artikel soll die Hintergründe der inzwischen häufigen Verwendung von „gelben Kunstlinsen” beleuchten – insbesondere die paradoxe Situation, dass zahlreiche grundlagenwissenschaftliche Untersuchungen unmissverständlich auf einen Sinn dieser Maßnahme hinweisen, es jedoch bei klinischen epidemiologischen Studien schwerer fällt, hier eindeutige Wirkbeziehungen herzustellen. So soll zunächst gezeigt werden, dass Anteile des sichtbaren Lichtes, insbesondere die kurzwelligen Anteile (vor allem das Blaulicht), für die Netzhaut des Auges und Sehnervs und damit für das Sehen in einem vielfältigen Sinne schädlich sein können. Aus der inzwischen ungeheuer stark angewachsenen Literatur zu „Blaulichtschaden” und oxidativem Stress der Retina, insbesondere der Makula, sollen die Hauptquellen für Radikalentstehung nach Lichteinwirkung herausgefiltert werden. Darüber hinaus soll von den nun vorliegenden zahlreichen Zell- und molekularbiologischen Studien, von den Tierversuchen und von den ersten klinischen Befunden abgeleitet werden, dass es sich aus Vor- und Fürsorge gerade für ältere und AMD-Patienten empfiehlt, nach kataraktbedingter Entfernung der Linse getönte Kunstlinsen einzusetzen.
Abstract
This review focuses on the scientific background for the use of ”yellow artificial lenses”. We will address the fact that numerous basic scientific publications point to a rationale for this practice although it is often difficult to derive clear-cut evidence from clinical epidemiological studies for the preventive use of yellow artificial lenses. In the first part we refer to studies showing that especially the shortwave part of the visible spectrum of light can be harmful for the retina and optic nerve. For this, we have screened the literature for the major sources of radical production and for the targets of oxidative stress after impingement of ”blue light” on the retina. Furthermore, we can show that many studies in cell and molecular biology, animal experiments and first clinical trials point to a preferential use of yellow-tinted lenses especially in the elderly and AMD patients.
Schlüsselwörter
Katarakt - refraktive Chirurgie - Retina - Blaulicht - gelbe Linse
Key words
cataract - refractive Surgery - retina - blue light - yellow lens
Literatur
- 1
Barker F, Brainard G.
The direct spectral transmittance of excised human lens as a function of age.
US Food and Drug Administration Report.
1991;
FDA
7853 450090 RA
MissingFormLabel
- 2
Boettner E A, Wolter J R.
Transmission of the ocular media.
Invest Ophthalmol.
1962;
1
776-783
MissingFormLabel
- 3
Bron A J, Vrensen G F, Koretz J. et al .
The ageing lens.
Ophthalmologica.
2000;
214
86-104
MissingFormLabel
- 4
Norren van D, Kraats van de J.
Spectral transmission of intraocular lenses expressed as a virtual age.
Br J Ophthalmol.
2007;
91
1374-1375
MissingFormLabel
- 5
Algvere P V, Seregard S.
Age-related maculopathy: pathogenetic features and new treatment modalities.
Acta Ophthalmol Scand.
2002;
80
136-143
MissingFormLabel
- 6
Wu J, Seregard S, Algvere P V.
Photochemical damage of the retina.
Surv Ophthalmol.
2006;
51
461-481
MissingFormLabel
- 7
Grimm C, Wenzel A, Hafezi F. et al .
Protection of Rpe65-deficient mice identifies rhodopsin as a mediator of light-induced
retinal degeneration.
Nat Genet.
2000;
25
63-66
MissingFormLabel
- 8
Grimm C, Reme C E, Rol P O. et al .
Blue light’s effects on rhodopsin: photoreversal of bleaching in living rat eyes.
Invest Ophthalmol Vis Sci.
2000;
41
3984-3990
MissingFormLabel
- 9
Grimm C, Wenzel A, Williams T. et al .
Rhodopsin-mediated blue-light damage to the rat retina: effect of photoreversal of
bleaching.
Invest Ophthalmol Vis Sci.
2001;
42
497-505
MissingFormLabel
- 10
Organisciak D T, Jiang Y L, Wang H M. et al .
The protective effect of ascorbic acid in retinal light damage of rats exposed to
intermittent light.
Invest Ophthalmol Vis Sci.
1990;
31
1195-1202
MissingFormLabel
- 11
Wu J, Chen E, Soderberg P G.
Failure of ascorbate to protect against broadband blue light-induced retinal damage
in rat.
Graefes Arch Clin Exp Ophthalmol.
1999;
237
855-860
MissingFormLabel
- 12
Delmelle M.
Retinal sensitized photodynamic damage to liposomes.
Photochem Photobiol.
1978;
28
357-360
MissingFormLabel
- 13
Rozanowska M, Wessels J, Boulton M. et al .
Blue light-induced singlet oxygen generation by retinal lipofuscin in non-polar media.
Free Radic Biol Med.
1998;
24
1107-1112
MissingFormLabel
- 14
Foote C S.
Mechanisms of photosensitized oxidation. There are several different types of photosensitized
oxidation which may be important in biological systems.
Science.
1968;
162
963-970
MissingFormLabel
- 15
Witting L A.
Lipid peroxidation in vivo.
J Am Oil Chem Soc.
1965;
42
908-913
MissingFormLabel
- 16
Spikes J D, Macknight M L.
Photodynamic effects on molecules of biological importance: amino acids, peptides
and proteins.
Res Prog Org Biol Med Chem.
1972;
3 (Pt 1)
124-136
MissingFormLabel
- 17
Sperling H G, Harwerth R S.
Red-green cone interactions in the increment-threshold spectral sensitivity of primates.
Science.
1971;
172
180-184
MissingFormLabel
- 18
Sperling H G, Johnson C, Harwerth R S.
Differential spectral photic damage to primate cones.
Vision Res.
1980;
20
1117-1125
MissingFormLabel
- 19
Katz M L, Christianson J S, Gao C L. et al .
Iron-induced fluorescence in the retina: dependence on vitamin A.
Invest Ophthalmol Vis Sci.
1994;
35
3613-3624
MissingFormLabel
- 20
Katz M L, Gao C L.
Vitamin A incorporation into lipofuscin-like inclusions in the retinal pigment epithelium.
Mech Ageing Dev.
1995;
84
29-38
MissingFormLabel
- 21
Katz M L, Gao C L, Rice L M.
Formation of lipofuscin-like fluorophores by reaction of retinal with photoreceptor
outer segments and liposomes.
Mech Ageing Dev.
1996;
92
159-174
MissingFormLabel
- 22
Wassell J, Boulton M.
A role for vitamin A in the formation of ocular lipofuscin.
Br J Ophthalmol.
1997;
81
911-918
MissingFormLabel
- 23
Birch D G, Berson E L, Sandberg M A.
Diurnal rhythm in the human rod ERG.
Invest Ophthalmol Vis Sci.
1984;
25
236-238
MissingFormLabel
- 24
Young R W.
Shedding of discs from rod outer segments in the rhesus monkey.
J Ultrastruct Res.
1971;
34
190-203
MissingFormLabel
- 25
Marshall J.
The ageing retina: physiology or pathology.
Eye.
1987;
1 (Pt 2)
282-295
MissingFormLabel
- 26
Acharya S, Foletta V C, Lee J W. et al .
SPACRCAN, a novel human interphotoreceptor matrix hyaluronan-binding proteoglycan
synthesized by photoreceptors and pinealocytes.
J Biol Chem.
2000;
275
6945-6955
MissingFormLabel
- 27
Hollyfield J G.
Hyaluronan and the functional organization of the interphotoreceptor matrix.
Invest Ophthalmol Vis Sci.
1999;
40
2767-2769
MissingFormLabel
- 28
Hollyfield J G, Rayborn M E, Nishiyama K. et al .
Interphotoreceptor matrix in the fovea and peripheral retina of the primate Macaca
mulatta: distribution and glycoforms of SPACR and SPACRCAN.
Exp Eye Res.
2001;
72
49-61
MissingFormLabel
- 29
Funk R H.
Blood supply of the retina.
Ophthalmic Res.
1997;
29
320-325
MissingFormLabel
- 30
Alder V A, Ben-Nun J, Cringle S J.
PO2 profiles and oxygen consumption in cat retina with an occluded retinal circulation.
Invest Ophthalmol Vis Sci.
1990;
31
1029-1034
MissingFormLabel
- 31
Linsenmeier R A, Braun R D, McRipley M A. et al .
Retinal hypoxia in long-term diabetic cats.
Invest Ophthalmol Vis Sci.
1998;
39
1647-1657
MissingFormLabel
- 32
Jang Y C, Remmen H V.
The mitochondrial theory of aging: Insight from transgenic and knockout mouse models.
Exp Gerontol.
2009;
44 (4)
256-260
MissingFormLabel
- 33
Lascaratos G, Ji D, Wood J P. et al .
Visible light affects mitochondrial function and induces neuronal death in retinal
cell cultures.
Vision Res.
2007;
47
1191-1201
MissingFormLabel
- 34
Yang J H, Basinger S F, Gross R L. et al .
Blue light-induced generation of reactive oxygen species in photoreceptor ellipsoids
requires mitochondrial electron transport.
Invest Ophthalmol Vis Sci.
2003;
44
1312-1319
MissingFormLabel
- 35
Osborne N N, Li G Y, Ji D. et al .
Light affects mitochondria to cause apoptosis to cultured cells: possible relevance
to ganglion cell death in certain optic neuropathies.
J Neurochem.
2008;
105
2013-2028
MissingFormLabel
- 36
Osborne N N, Lascaratos G, Bron A J. et al .
A hypothesis to suggest that light is a risk factor in glaucoma and the mitochondrial
optic neuropathies.
Br J Ophthalmol.
2006;
90
237-241
MissingFormLabel
- 37 Noell W K. Aspects of experimental and hereditary degeneration. C Graymore Biochemistry of the retina London; Academic Press 1965: 51-72
MissingFormLabel
- 38
Noell W K, Walker V S, Kang B S. et al .
Retinal damage by light in rats.
Invest Ophthalmol.
1966;
5
450-473
MissingFormLabel
- 39
Wenzel A, Grimm C, Samardzija M. et al .
Molecular mechanisms of light-induced photoreceptor apoptosis and neuroprotection
for retinal degeneration.
Prog Retin Eye Res.
2005;
24
275-306
MissingFormLabel
- 40
Wiegand R D, Giusto N M, Rapp L M. et al .
Evidence for rod outer segment lipid peroxidation following constant illumination
of the rat retina.
Invest Ophthalmol Vis Sci.
1983;
24
1433-1435
MissingFormLabel
- 41
Tanito M, Yoshida Y, Kaidzu S. et al .
Detection of lipid peroxidation in light-exposed mouse retina assessed by oxidative
stress markers, total hydroxyoctadecadienoic acid and 8-iso-prostaglandin F 2alpha.
Neurosci Lett.
2006;
398
63-68
MissingFormLabel
- 42
Kuwabara T, Gom R A.
Retina damage by visible light. An electron microscopic study.
Arch Ophthalmol.
1968;
79
69-78
MissingFormLabel
- 43
O’Steen W K, Shear C R, Anderson K V.
Retinal damage after prolonged exposure to visible light. A light and electron microscopic
study.
Am J Anat.
1972;
134
5-21
MissingFormLabel
- 44
Sykes S M, Robison W G, Waxler Jr M. et al .
Damage to the monkey retina by broad-spectrum fluorescent light.
Invest Ophthalmol Vis Sci.
1981;
20
425-434
MissingFormLabel
- 45
Ham W T, Ruffolo Jr J J, Mueller H A. et al .
Histologic analysis of photochemical lesions produced in rhesus retina by short-wave-length
light.
Invest Ophthalmol Vis Sci.
1978;
17
1029-1035
MissingFormLabel
- 46
Bok Jr D.
The retinal pigment epithelium: a versatile partner in vision.
J Cell Sci Suppl.
1993;
17
189-195
MissingFormLabel
- 47
Bok D.
Processing and transport of retinoids by the retinal pigment epithelium.
Eye.
1990;
4 (Pt 2)
326-332
MissingFormLabel
- 48
Saari J C, Bredberg D L, Noy N.
Control of substrate flow at a branch in the visual cycle.
Biochemistry.
1994;
33
3106-3112
MissingFormLabel
- 49
Boulton M, Dontsov A, Jarvis-Evans J. et al .
Lipofuscin is a photoinducible free radical generator.
J Photochem Photobiol B.
1993;
19
201-204
MissingFormLabel
- 50
Davies S, Elliott M H, Floor E. et al .
Photocytotoxicity of lipofuscin in human retinal pigment epithelial cells.
Free Radic Biol Med.
2001;
31
256-265
MissingFormLabel
- 51
Holz F G, Pauleikhoff D, Klein R. et al .
Pathogenesis of lesions in late age-related macular disease.
Am J Ophthalmol.
2004;
137
504-510
MissingFormLabel
- 52
Wihlmark U, Wrigstad A, Roberg K. et al .
Lipofuscin accumulation in cultured retinal pigment epithelial cells causes enhanced
sensitivity to blue light irradiation.
Free Radic Biol Med.
1997;
22
1229-1234
MissingFormLabel
- 53
Avalle L B, Wang Z, Dillon J P. et al .
Observation of A 2E oxidation products in human retinal lipofuscin.
Exp Eye Res.
2004;
78
895-898
MissingFormLabel
- 54
Cubeddu R, Taroni P, Hu D N. et al .
Photophysical studies of A 2-E, putative precursor of lipofuscin, in human retinal
pigment epithelial cells.
Photochem Photobiol.
1999;
70
172-175
MissingFormLabel
- 55
Liu J, Itagaki Y, Ben-Shabat S. et al .
The biosynthesis of A 2E, a fluorophore of aging retina, involves the formation of
the precursor, A 2-PE, in the photoreceptor outer segment membrane.
J Biol Chem.
2000;
275
29354-29360
MissingFormLabel
- 56
Mata N L, Weng J, Travis G H.
Biosynthesis of a major lipofuscin fluorophore in mice and humans with ABCR-mediated
retinal and macular degeneration.
Proc Natl Acad Sci U S A.
2000;
97
7154-7159
MissingFormLabel
- 57
Parish C A, Hashimoto M, Nakanishi K. et al .
Isolation and one-step preparation of A 2E and iso-A2E, fluorophores from human retinal
pigment epithelium.
Proc Natl Acad Sci U S A.
1998;
95
14 609-14 613
MissingFormLabel
- 58
Weng J, Mata N L, Azarian S M. et al .
Insights into the function of Rim protein in photoreceptors and etiology of Stargardt’s
disease from the phenotype in abcr knockout mice.
Cell.
1999;
98
13-23
MissingFormLabel
- 59
Rezai K A, Gasyna E, Seagle B L. et al .
AcrySof Natural filter decreases blue light-induced apoptosis in human retinal pigment
epithelium.
Graefes Arch Clin Exp Ophthalmol.
2008;
246
671-676
MissingFormLabel
- 60
Schutt F, Davies S, Kopitz J. et al .
Photodamage to human RPE cells by A 2-E, a retinoid component of lipofuscin.
Invest Ophthalmol Vis Sci.
2000;
41
2303-2308
MissingFormLabel
- 61
Sparrow J R, Nakanishi K, Parish C A.
The lipofuscin fluorophore A2E mediates blue light-induced damage to retinal pigmented
epithelial cells.
Invest Ophthalmol Vis Sci.
2000;
41
1981-1989
MissingFormLabel
- 62
Boulton M, Rozanowska M, Rozanowski B.
Retinal photodamage.
J Photochem Photobiol B.
2001;
64
144-161
MissingFormLabel
- 63
Sparrow J R, Cai B.
Blue light-induced apoptosis of A2E-containing RPE: involvement of caspase-3 and protection
by Bcl-2.
Invest Ophthalmol Vis Sci.
2001;
42
1356-1362
MissingFormLabel
- 64
Gaillard E R, Atherton S J, Eldred G. et al .
Photophysical studies on human retinal lipofuscin.
Photochem Photobiol.
1995;
61
448-453
MissingFormLabel
- 65
Sparrow J R, Miller A S, Zhou J.
Blue light-absorbing intraocular lens and retinal pigment epithelium protection in
vitro.
J Cataract Refract Surg.
2004;
30
873-878
MissingFormLabel
- 66
Tanito M, Elliott M H, Kotake Y. et al .
Protein modifications by 4-hydroxynonenal and 4-hydroxyhexenal in light-exposed rat
retina.
Invest Ophthalmol Vis Sci.
2005;
46
3859-3868
MissingFormLabel
- 67
Ranchon I, LaVail M M, Kotake Y. et al .
Free radical trap phenyl-N-tert-butylnitrone protects against light damage but does
not rescue P 23 H and S 334ter rhodopsin transgenic rats from inherited retinal degeneration.
J Neurosci.
2003;
23
6050-6057
MissingFormLabel
- 68
Shen J, Yang X, Dong A. et al .
Oxidative damage is a potential cause of cone cell death in retinitis pigmentosa.
J Cell Physiol.
2005;
203
457-464
MissingFormLabel
- 69
Crabb J W, Miyagi M, Gu X. et al .
Drusen proteome analysis: an approach to the etiology of age-related macular degeneration.
Proc Natl Acad Sci U S A.
2002;
99
14682-14687
MissingFormLabel
- 70
Gu X, Meer S G, Miyagi M. et al .
Carboxyethylpyrrole protein adducts and autoantibodies, biomarkers for age-related
macular degeneration.
J Biol Chem.
2003;
278
42 027-42 035
MissingFormLabel
- 71
Dunaief J L, Dentchev T, Ying G S. et al .
The role of apoptosis in age-related macular degeneration.
Arch Ophthalmol.
2002;
120
1435-1442
MissingFormLabel
- 72
Glenn J V, Mahaffy H, Wu K. et al .
Advanced glycation end product (AGE) accumulation on Bruch’s membrane: links to age-related
RPE dysfunction.
Invest Ophthalmol Vis Sci.
2009;
50
441-451
MissingFormLabel
- 73
Howes K A, Liu Y, Dunaief J L. et al .
Receptor for advanced glycation end products and age-related macular degeneration.
Invest Ophthalmol Vis Sci.
2004;
45
3713-3720
MissingFormLabel
- 74
Schmidt K G, Bergert H, Funk R HW.
Neurodegenerative Diseases of the Retina and Potential for Protection and Recovery.
Current Neuropharmacology.
2008;
6
164-178
MissingFormLabel
- 75
Wu J, Seregard S, Spangberg B. et al .
Blue light induced apoptosis in rat retina.
Eye.
1999;
13 (Pt 4)
577-583
MissingFormLabel
- 76
Shaban H, Richter C.
A2E and blue light in the retina: the paradigm of age-related macular degeneration.
Biol Chem.
2002;
383
537-545
MissingFormLabel
- 77
Ham W T, Mueller H A, Ruffolo Jr J J. et al .
Sensitivity of the retina to radiation damage as a function of wavelength.
Photochem Photobiol.
1979;
29
735-743
MissingFormLabel
- 78
Ham Jr W T, Mueller H A, Sliney D H.
Retinal sensitivity to damage from short wavelength light.
Nature.
1976;
260
153-155
MissingFormLabel
- 79
Lawwill Jr T, Crockett S, Currier G.
Retinal damage secondary to chronic light exposure, thresholds and mechanisms.
Doc Ophthalmol.
1977;
44
379-402
MissingFormLabel
- 80
Ts’o M O, Fine B S, Zimmerman L E.
Photic maculopathy produced by the indirect ophthalmoscope. 1. Clinical and histopathologic
study.
Am J Ophthalmol.
1972;
73
686-699
MissingFormLabel
- 81
Noell W K.
Effects of environmental lighting and dietary vitamin A on the vulnerability of the
retina to light damage.
Photochem Photobiol.
1979;
29
717-723
MissingFormLabel
- 82
Battelle B A, LaVail M M.
Rhodopsin content and rod outer segment length in albino rat eyes: modification by
dark adaptation.
Exp Eye Res.
1978;
26
487-497
MissingFormLabel
- 83
Organisciak D T, Noell W K.
The rod outer segment phospholipid/opsin ratio of rats maintained in darkness or cyclic
light.
Invest Ophthalmol Vis Sci.
1977;
16
188-190
MissingFormLabel
- 84
Organisciak D T, Wang H M, Li Z Y. et al .
The protective effect of ascorbate in retinal light damage of rats.
Invest Ophthalmol Vis Sci.
1985;
26
1580-1588
MissingFormLabel
- 85
Penn J S, Anderson R E.
Effect of light history on rod outer-segment membrane composition in the rat.
Exp Eye Res.
1987;
44
767-778
MissingFormLabel
- 86
Penn J S, Naash M I, Anderson R E.
Effect of light history on retinal antioxidants and light damage susceptibility in
the rat.
Exp Eye Res.
1987;
44
779-788
MissingFormLabel
- 87
Liang H L, Whelan H T, Eells J T. et al .
Near-infrared light via light-emitting diode treatment is therapeutic against rotenone-
and 1-methyl-4-phenylpyridinium ion-induced neurotoxicity.
Neuroscience.
2008;
153
963-974
MissingFormLabel
- 88
Klein R, Klein B E, Linton K L.
Prevalence of age-related maculopathy. The Beaver Dam Eye Study.
Ophthalmology.
1992;
99
933-943
MissingFormLabel
- 89
Mainster M A, Ham W T, Delori F C.
Potential retinal hazards. Instrument and environmental light sources.
Ophthalmology.
1983;
90
927-932
MissingFormLabel
- 90
Margrain T H, Boulton Jr M, Marshall J. et al .
Do blue light filters confer protection against age-related macular degeneration?.
Prog Retin Eye Res.
2004;
23
523-531
MissingFormLabel
- 91
Schrader W F.
Age-related macular degeneration: a socioeconomic time bomb in our aging society.
Ophthalmologe.
2006;
103
742-748
MissingFormLabel
- 92
Scholl H P, Fleckenstein M, Charbel Issa P. et al .
An update on the genetics of age-related macular degeneration.
Mol Vis.
2007;
13
196-205
MissingFormLabel
- 93
Swaroop A, Branham K E, Chen W. et al .
Genetic susceptibility to age-related macular degeneration: a paradigm for dissecting
complex disease traits.
Hum Mol Genet.
2007;
16 (Spec No. 2)
R174-R182
MissingFormLabel
- 94
Gu J, Paeur G J, Yue X. et al .
Assessing susceptibility to age-related macular degeneration with proteomic and genomic
biomarkers.
Mol Cell Proteomics.
2009;
8 (6)
1338-1349
MissingFormLabel
- 95
Barron M J, Johnson M A, Andrews R M. et al .
Mitochondrial abnormalities in ageing macular photoreceptors.
Invest Ophthalmol Vis Sci.
2001;
42
3016-3022
MissingFormLabel
- 96
Nilsson S E, Textorius O, Andersson B E. et al .
Clear PMMA versus yellow intraocular lens material. An electrophysiologic study on
pigmented rabbits regarding ”the blue light hazard”.
Prog Clin Biol Res.
1989;
314
539-553
MissingFormLabel
- 97
Tanito M, Kaidzu S, Anderson R E.
Protective effects of soft acrylic yellow filter against blue light-induced retinal
damage in rats.
Exp Eye Res.
2006;
83
1493-1504
MissingFormLabel
- 98
Sperduto R D, Hiller R, Seigel D.
Lens opacities and senile maculopathy.
Arch Ophthalmol.
1981;
99
1004-1008
MissingFormLabel
- 99
West S K, Rosenthal F S, Bressler N M. et al .
Exposure to sunlight and other risk factors for age-related macular degeneration.
Arch Ophthalmol.
1989;
107
875-879
MissingFormLabel
- 100
Mitchell P, Smith W, Attebo K. et al .
Prevalence of age-related maculopathy in Australia. The Blue Mountains Eye Study.
Ophthalmology.
1995;
102
1450-1460
MissingFormLabel
- 101
Mitchell P, Wang J J, Foran S. et al .
Five-year incidence of age-related maculopathy lesions: the Blue Mountains Eye Study.
Ophthalmology.
2002;
109
1092-1097
MissingFormLabel
- 102
VanNewkirk M R, Nanjan M B, Wang J J. et al .
The prevalence of age-related maculopathy: the visual impairment project.
Ophthalmology.
2000;
107
1593-1600
MissingFormLabel
- 103
Wang J J, Klein R, Smith W. et al .
Cataract surgery and the 5-year incidence of late-stage age-related maculopathy: pooled
findings from the Beaver Dam and Blue Mountains eye studies.
Ophthalmology.
2003;
110
1960-1967
MissingFormLabel
- 104
Wang J J, Mitchell P G, Cumming R G. et al .
Cataract and age-related maculopathy: the Blue Mountains Eye Study.
Ophthalmic Epidemiol.
1999;
6
317-326
MissingFormLabel
- 105
Werner J S, Steele V G, Pfoff D S.
Loss of human photoreceptor sensitivity associated with chronic exposure to ultraviolet
radiation.
Ophthalmology.
1989;
96
1552-1558
MissingFormLabel
- 106
Schaft T L, Mooy C M, Bruijn de W C. et al .
Increased prevalence of disciform macular degeneration after cataract extraction with
implantation of an intraocular lens.
Br J Ophthalmol.
1994;
78
441-445
MissingFormLabel
- 107
Pollack van der A, Marcovich A, Bukelman A. et al .
Age-related macular degeneration after extracapsular cataract extraction with intraocular
lens implantation.
Ophthalmology.
1996;
103
1546-1554
MissingFormLabel
- 108
Armbrecht A M, Findlay C, Aspinall P A. et al .
Cataract surgery in patients with age-related macular degeneration: one-year outcomes.
J Cataract Refract Surg.
2003;
29
686-693
MissingFormLabel
- 109
Kaiserman I, Kaiserman N, Elhayany A. et al .
Cataract surgery is associated with a higher rate of photodynamic therapy for age-related
macular degeneration.
Ophthalmology.
2007;
114
278-282
MissingFormLabel
- 110
Baatz H, Darawsha R, Ackermann H. et al .
Phacoemulsification does not induce neovascular age-related macular degeneration.
Invest Ophthalmol Vis Sci.
2008;
49
1079-1083
MissingFormLabel
- 111
Cugati S, Mitchell P, Rochtchina E. et al .
Cataract surgery and the 10-year incidence of age-related maculopathy: the Blue Mountains
Eye Study.
Ophthalmology.
2006;
113
2020-2025
MissingFormLabel
- 112
Cugati S, Loryn de T, Pham T. et al .
Australian prospective study of cataract surgery and age-related macular degeneration:
rationale and methodology.
Ophthalmic Epidemiol.
2007;
14
408-414
MissingFormLabel
- 113
Armbrecht A M, Findlay C, Kaushal S. et al .
Is cataract surgery justified in patients with age related macular degeneration? A
visual function and quality of life assessment.
Br J Ophthalmol.
2000;
84
1343-1348
MissingFormLabel
- 114
Shuttleworth G N, Galloway P H.
Analysis of the United Kingdom solar eclipse public health campaign 1999.
Clin Experiment Ophthalmol.
2002;
30
308-310
MissingFormLabel
- 115
Shuttleworth G N, Luhishi E A, Harrad R A.
Do patients with age related maculopathy and cataract benefit from cataract surgery?.
Br J Ophthalmol.
1998;
82
611-616
MissingFormLabel
- 116
Falkner-Radler C I, Benesch T, Binder S.
Blue light-filter intraocular lenses in vitrectomy combined with cataract surgery:
results of a randomized controlled clinical trial.
Am J Ophthalmol.
2008;
145
499-503
MissingFormLabel
- 117
Takahashi H.
Free radical development in phacoemulsification cataract surgery.
J Nippon Med Sch.
2005;
72
4-12
MissingFormLabel
- 118
Riesz P, Kondo T.
Free radical formation induced by ultrasound and its biological implications.
Free Radic Biol Med.
1992;
13
247-270
MissingFormLabel
- 119
Shimmura S, Tsubota K, Oguchi Y. et al .
Oxiradical-dependent photoemission induced by a phacoemulsification probe.
Invest Ophthalmol Vis Sci.
1992;
33
2904-2907
MissingFormLabel
- 120
Nemet A Y, Assia E I, Meyerstein D. et al .
Protective effect of free-radical scavengers on corneal endothelial damage in phacoemulsification.
J Cataract Refract Surg.
2007;
33
310-315
MissingFormLabel
- 121
Rubowitz A, Assia E I, Rosner M. et al .
Antioxidant protection against corneal damage by free radicals during phacoemulsification.
Invest Ophthalmol Vis Sci.
2003;
44
1866-1870
MissingFormLabel
- 122
De Biaggi C P, Barros P SM, Silva V V. et al .
Ascorbic acid levels of aqueous humor of dogs after experimental phacoemulsification.
Veterinary Ophthalmology.
2006;
9
299-302
MissingFormLabel
- 123
Cameron M D, Poyer J F, Aust S D.
Identification of free radicals produced during phacoemulsification.
J Cataract Refract Surg.
2001;
27
463-470
MissingFormLabel
- 124
Dherani M, Murthy G V, Gupta S K. et al .
Blood levels of vitamin C, carotenoids and retinol are inversely associated with cataract
in a North Indian population.
Invest Ophthalmol Vis Sci.
2008;
49
3328-3335
MissingFormLabel
- 125
Yagihashi T, Wakabayashi Y, Kezuka J. et al .
Changes in vitreous amino acid concentrations in a rabbit model of cataract surgery.
Acta Ophthalmol Scand.
2007;
85
303-308
MissingFormLabel
Prof. Katrin Engelmann
Klinik für Augenheilkunde, Klinikum Chemnitz gGmbH
Flemmingstr. 2
09116 Chemnitz
Phone: ++ 49/3 71/33 33 32 30
Fax: ++ 49/3 71/33 33 32 23
Email: k.engelmann@skc.de