Planta Med 2009; 75(13): 1453-1458
DOI: 10.1055/s-0029-1185775
Biochemistry, Molecular Biology and Biotechnology
Original Paper
© Georg Thieme Verlag KG Stuttgart · New York

Overexpression of the HMG‐CoA Reductase Gene Leads to Enhanced Artemisinin Biosynthesis in Transgenic Artemisia annua Plants

Samina Aquil1 , 3 , Amjad Masood Husaini1 , Malik Zainul Abdin1 , Gulam Muhammad Rather2
  • 1Centre for Transgenic Plant Development, Department of Biotechnology, Jamia Hamdard, New Delhi, India
  • 2Department of Chemistry, Indian Institute of Technology, New Delhi, India
  • 3Current address: Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India
Further Information

Publication History

received August 3, 2008 revised April 17, 2009

accepted April 28, 2009

Publication Date:
23 June 2009 (online)

Abstract

An effective and affordable treatment against malaria is still a challenge for medicine. Most contemporary drugs either are too expensive to produce or are not effective against resistant strains of the malaria parasite Plasmodium falciparum. The plant Artemisia annua L. is the source of artemisinin, an effective drug against malaria for which no resistant strains of the bacterium have been reported. However, the artemisinin content of A. annua is very low, which makes its production expensive. Here we report the use of transgenic technology to increase the artemisinin content of A. annua. We report the production of transgenic plants of A. annua into which we transferred 3-hydroxy-3-methylglutaryl CoA reductase (HMGR) gene from Catharanthus roseus (L.) G. Don using Agrobacterium-mediated gene transfer technology. Transgene integration and copy number were assessed by PCR and Southern hybridization, which confirmed the stable integration of multiple copies of the transgene in 7 different transgenic lines of A. annua. The leaf tissue of three of the A. annua transgenic lines possessed significantly higher HMGR activity compared with wild-type controls, and this activity was associated exclusively with microsomal membranes. The artemisinin content of the shoots of one of the transgenic lines depicted an increase of 22.5 % artemisinin content compared with wild-type control A. annua plants.

References

  • 1 Wang C W. The forest of China with a survey of grassland and desert vegetation. Harvard University Maria Moors Cabot Foundation, vol 5. Cambridge; Harvard University 1961: 171-187
  • 2 Abdin M Z, Israr M, Rehman R U, Jain S K. Artemisinin, a novel antimalarial drug: biochemical and molecular approaches for enhanced production.  Planta Med. 2003;  69 289-299
  • 3 Krishna S, Uhlemann A C, Haynes R K. Artemisinins: mechanisms of action and potential for resistance.  Drug Resist Updat. 2004;  7 233-244
  • 4 Dondorp A, Nosten F, Stepniewska K, Day N, White N. Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial.  Lancet. 2006;  9487 717-725
  • 5 Martensson A, Strömberg J, Sisowath C, Msellem M I, Gil J P, Montgomery S M, Olliaro P, Ali A S, Bjorkman A. Efficacy of artesunate plus amodiaquine versus that of artemether-lumefantrine for the treatment of uncomplicated childhood Plasmodium falciparum malaria in Zanzibar, Tanzania.  Clin Infect Dis. 2005;  41 1079-1086
  • 6 Liu C, Zhao Y, Wang Y. Artemisinin: current state and perspectives for biotechnological production of an antimalarial drug.  Appl Microbiol Biotechnol. 2006;  72 11-20
  • 7 Chappell J, Wolf F, Proulx J, Cuellar R, Saunders C. Is the reaction catalyzed by 3-hydroxy-3-methylglutaryl coenzyme A reductase a rate-limiting step for isoprenoid biosynthesis in plants?.  Plant Physiol. 1995;  109 1337-1343
  • 8 Zhang L, Jing F, Li F, Li M, Wang Y, Wang G, Sun X, Tang K. Development of transgenic Artemisia annua with enhanced artemisinin content by hairpin-RNA mediated gene silencing.  Biotechnol Appl Biochem. 2008;  52 199-207
  • 9 Pirttila A M, Hirsikorpi M, Kamarainen T, Jaakola L, Hohtola A. DNA isolation methods for medicinal and aromatic plants.  Plant Mol Biol Rep. 2001;  19 273-277
  • 10 Maldonado M IE, Burnett R J, Nessler C L. Nucleotide sequence of a cDNA encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase from Catharanthus roseus.  Plant Physiol. 1992;  100 1613-1614
  • 11 Hofgen R, Willmitzer L. Storage of competent cells of Agrobacterium transformation.  Nucl Acid Res. 1998;  16 9877
  • 12 Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures.  Physiol Plant. 1962;  15 485
  • 13 Russell D W. 3-Hydroxy-3-methylglutaryl CoA reductase from pea seedlings.  Methods Enzymol. 1985;  110 26-40
  • 14 Bradford M M. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.  Anal Biochem. 1976;  72 248-254
  • 15 Zhao S S, Zeng M. Spectrometric high-pressure liquid chromatography (HPLC) studies on the analysis of Quighaosu.  Planta Med. 1985;  3 233-237
  • 16 Matsushita Y, Kang W Y, Charlwood B V. Cloning and analysis of a cDNA encoding farnesyl diphosphate synthase from Artemisia annua.  Gene. 1996;  172 207-209
  • 17 Mercke P, Bengtsson M, Bouwmeester H J, Posthumus M A, Brodelius P E. Molecular cloning, expression and characterization of amorpha-4, 11-diene synthase, a key enzyme of artemisinin biosynthesis in Artemisia annua L.  Arch Biochem Biophys. 2000;  381 173-180
  • 18 Wallaart T E, Bouwmeester H J, Hille J, Poppinga L, Maijers N CA. Amorpha-4,11-diene synthase: cloning and functional expression of a key enzyme in the biosynthetic pathway of the novel antimalarial drug artemisinin.  Planta. 2001;  212 460-465
  • 19 Bach T J. Hydroxymethylglutaryl coenzyme A reductase, a key enzyme in photosterol synthesis?.  Lipids. 1986;  21 82-88
  • 20 Stermer B A, Bostock R M. Involvement of 3-hydroxy-3-methylglutaryl coenzyme A reductase in the regulation of sesquiterpenoid phytolexin synthesis in potato.  Plant Physiol. 1987;  84 404-408
  • 21 Gondet L, Weber T, Maillot-Vernior P, Benveniste P, Bach T J. Regulatory role of microsomal 3-hydroxy-3-methylglutary coenzyme A reductase in tobacco mutant that overproduces sterols.  Biochem Biophys Res Commun. 1992;  186 888-893
  • 22 Bach T J, Weber T, Motel A. Some properties of enzymes involved in the biosynthesis and metabolism of 3-hydroxy-3-methylglutaryl-CoA in plants.  Recent Adv Phytochem. 1990;  24 1-82
  • 23 Ji W, Hatzios K K, Cramer C. Expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in maize tissues.  Physiol Plant. 1992;  84 185-192
  • 24 Simon J E, Charles D, Cebert E, Grant L, Janick J, Whipkey A. Artemisia annua, A promising aromatic and medicinal. Janick J, Simon JE Advances in new crops. Portland: West Lafayette; Timber Press 1990: 522-526
  • 25 Vergauwe A, Cammaert R, Vandenberghe D, Genetello C, Van Montagu D M, Van Den Eeckhout E. Agrobacterium tumefaciens-mediated transformation of Artemisia annua and the regeneration of transgenic plants.  Plant Cell Report. 1996;  15 929-933
  • 26 Prols F, Meyer P. The methylation patterens of chromosomal integration regions influence gene activity of transferred DNA in Petunia hybrida.  Plant J. 1992;  2 465-475
  • 27 Matassi G, Montero L M, Salinas J, Bernardi G. The isochore organization and the compositional distribution of homologous coding sequences in the nuclear genome of plants.  Nucl Acid Res. 1989;  17 5273-5290
  • 28 Meyer P, Heidmann I. Epigenetic variants of a transgenic Petunia line show hypermethylation in transgene DNA: an indication for specific recognition of foreign DNA in transgenic plants.  Mol Gen Genet. 1994;  243 390-399
  • 29 Han J L, Wang H, Ye H C, Liu Y, Li Z Q, Zhang Y, Zhang Y S, Yan F, Li G F. High efficiency of genetic transformation and regeneration of Artemisia annua via Agrobacterium tumefaciens-mediated procedure.  Plant Sci. 2005;  168 73-80
  • 30 Vergauwe A, Van Geldre E, Inze D, Van Montagu M, Van den Eeckhout E. Factors influencing Agrobacterium tumefaciens-mediated transformation of Artemisia annua.  Plant Cell Report. 1998;  18 105-110

Dr. Amjad Masood Husaini

Division of Plant Breeding and Genetics
Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir

Shalimar

J & K 191121

India

Email: dr.amjadhusaini@hotmail.com

Dr. Malik Zainul Abdin

Centre for Transgenic Plant Development
Department of Biotechnology
Jamia Hamdard

New Delhi

India

Email: mzabdin@rediffmail.com

>