Subscribe to RSS
DOI: 10.1055/s-0029-1245563
© Georg Thieme Verlag KG Stuttgart · New York
Untersuchung von Zentrierung und Positionsstabilität bei modernen Intraokularlinsen nach Kataraktchirurgie
Assessment of Centration and Position Stability of Modern Intraocular Lenses after Cataract SurgeryPublication History
Eingegangen: 21.5.2010
Angenommen: 21.6.2010
Publication Date:
12 August 2010 (online)

Zusammenfassung
Zentrierung und Positionsstabilität von Intraokularlinsen (IOL) sind entscheidende Faktoren für optische Qualität und Vorhersagbarkeit des Ergebnisses nach IOL-Implantation. Stetige Weiterentwicklung von IOL-Design und -Materialien, Operationstechnik und Messmethoden tragen zur Optimierung der Korrektur des pseudophaken Auges und zum besseren Verständnis der Auswirkung der IOL-Position bei. Mit modernen IOL kann bei Implantation in den Kapselsack eine Positionierung und Stabilität vergleichbar der natürlichen Linse erzielt werden.
Abstract
Centration and positional stability of intraocular lenses (IOLs) are crucial factors for optical quality and predictability of the result after IOL implantation. Continuous improvements of IOL design and materials, surgical techniques and measurement methods have contributed to an optimised correction of the presudophakic eye and to a better unterstanding of the effects of IOL positioning. With modern IOLs implanted into the capsular bag, positioning and stability comparable to the natural crystalline lens can be achieved.
Schlüsselwörter
Katarakt - physiologische Optik - refraktive Chirurgie
Key words
cataract - physiological Optics - refractive Surgery
Literatur
- 1
Auffarth G U, Apple D J.
Entwicklungsgeschichte der Intraokularlinsen.
Ophthalmologe.
2001;
98
1017-1028
MissingFormLabel
- 2
Kohnen T.
MICS – Mikroinzisionale Kataraktchirurgie.
Ophthalmologe.
2010;
107
105-107
MissingFormLabel
- 3
Atchison D A.
Optical design of intraocular lenses. III. On-axis performance in the presence of
lens displacement.
Optom Vis Sci.
1989;
66
671-681
MissingFormLabel
- 4
Kohnen T, Klaproth O K.
Asphärische Intraokularlinsen.
Ophthalmologe.
2008;
105
234-240
MissingFormLabel
- 5
Kohnen T, Klaproth O K, Bühren J.
Effect of intraocular lens asphericity on quality of vision after cataract removal:
an intra-individual comparison.
Ophthalmology.
2009;
;in press
MissingFormLabel
- 6
Korynta J, Bok J, Cendelin J et al.
Computer modeling of visual impairment caused by intraocular lens misalignment.
J Cataract Refract Surg.
1999;
25
100-105
MissingFormLabel
- 7
Bühren J, Kohnen T.
Anwendung der Wellenfrontanalyse in Klinik und Wissenschaft. Vom irregularen Astigmatismus
zu Aberrationen höherer Ordnung – Teil I: Grundlagen.
Ophthalmologe.
2007;
104
909-923
; quiz 924 – 905
MissingFormLabel
- 8
Bühren J, Kohnen T.
Anwendung der Wellenfrontanalyse in Klinik und Wissenschaft : Vom irregularen Astigmatismus
zu Aberrationen höherer Ordnung – Teil II: Beispiele.
Ophthalmologe.
2007;
104
991-1006
; quiz 1007 – 1008
MissingFormLabel
- 9
Wang L, Dai E, Koch D D et al.
Optical aberrations of the human anterior cornea.
J Cataract Refract Surg.
2003;
29
1514-1521
MissingFormLabel
- 10
Holladay J T, Piers P A, Koranyi G et al.
A new intraocular lens design to reduce spherical aberration of pseudophakic eyes.
Journal of Refractive Surgery.
2002;
18
683-691
MissingFormLabel
- 11
Kasper T, Bühren J, Kohnen T.
Visual performance of aspherical and spherical intraocular lenses: intraindividual
comparison of visual acuity, contrast sensitivity, and higher-order aberrations.
J Cataract Refract Surg.
2006;
32
2022-2029
MissingFormLabel
- 12
Altmann G E, Nichamin L D, Lane S S et al.
Optical performance of 3 intraocular lens designs in the presence of decentration.
J Cataract Refract Surg.
2005;
31
574-585
MissingFormLabel
- 13
Dietze H H, Cox M J.
Limitations of correcting spherical aberration with aspheric intraocular lenses.
J Refract Surg.
2005;
21
S541-546
MissingFormLabel
- 14
Jung C K, Chung S K, Baek N H.
Decentration and tilt: silicone multifocal versus acrylic soft intraocular lenses.
J Cataract Refract Surg.
2000;
26
582-585
MissingFormLabel
- 15
Wallin T R, Hinckley M, Nilson C et al.
A clinical comparison of single-piece and three-piece truncated hydrophobic acrylic
intraocular lenses.
Am J Ophthalmol.
2003;
136
614-619
MissingFormLabel
- 16
Wang L, Koch D D.
Effect of decentration of wavefront-corrected intraocular lenses on the higher-order
aberrations of the eye.
Arch Ophthalmol.
2005;
123
1226-1230
MissingFormLabel
- 17
Brown N.
An advanced slit-image camera.
Br J Ophthalmol.
1972;
56
624-631
MissingFormLabel
- 18
Sasaki K, Sakamoto Y, Shibata T et al.
Measurement of postoperative intraocular lens tilting and decentration using Scheimpflug
images.
J Cataract Refract Surg.
1989;
15
454-457
MissingFormLabel
- 19
Hayashi K, Yoshida M, Hayashi H.
Comparison of posterior capsule opacification between fellow eyes with two types of
acrylic intraocular lens.
Eye.
2006;
22
35-41
MissingFormLabel
- 20
Dubbelman M, Weeber H A, Heijde R G et al.
Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug
photography.
Acta Ophthalmologica Scandinavica.
2002;
80
379
MissingFormLabel
- 21
Guyton D L, Uozato van der H, Wisnicki H J.
Rapid determination of intraocular lens tilt and decentration through the undilated
pupil.
Ophthalmology.
1990;
97
1259-1264
MissingFormLabel
- 22
Kozaki J, Tanihara H, Yasuda A et al.
Tilt and decentration of the implanted posterior chamber intraocular lens.
J Cataract Refract Surg.
1991;
17
592-595
MissingFormLabel
- 23
Tabernero J, Piers P, Benito A et al.
Predicting the Optical Performance of Eyes Implanted with IOLs to Correct Spherical
Aberration.
Invest Ophthalmol Vis Sci.
2006;
47
4651-4658
MissingFormLabel
- 24
Schaeffel F.
Binocular lens tilt and decentration measurements in healthy subjects with phakic
eyes.
Invest Ophthalmol Vis Sci.
2008;
49
2216-2222
MissingFormLabel
- 25
Rosales P, Marcos S.
Phakometry and lens tilt and decentration using a custom-developed Purkinje imaging
apparatus: validation and measurements.
J Opt Soc Am A.
2006;
23
509-520
MissingFormLabel
- 26
Auran J D, Koester C J, Donn A.
In vivo measurement of posterior chamber intraocular lens decentration and tilt.
Arch Ophthalmol.
1990;
108
75-79
MissingFormLabel
- 27
Hayashi K, Harada M, Hayashi H et al.
Decentration and tilt of polymethyl methacrylate, silicone, and acrylic soft intraocular
lenses.
Ophthalmology.
1997;
104
793-798
MissingFormLabel
- 28
Baumeister M, Neidhardt B, Strobel J et al.
Tilt and decentration of three-piece foldable high-refractive silicone and hydrophobic
acrylic intraocular lenses with 6-mm optics in an intraindividual comparison.
Am J Ophthalmol.
2005;
140
1051-1058
MissingFormLabel
- 29
Baumeister M, Kohnen T.
Scheimpflug measurement of intraocular lens position after piggyback implantation
of foldable intraocular lenses in eyes with high hyperopia.
J Cataract Refract Surg.
2006;
32
2098-2104
MissingFormLabel
- 30
Nejima R, Miyata K, Honbou M et al.
A prospective, randomised comparison of single and three piece acrylic foldable intraocular
lenses.
Br J Ophthalmol.
2004;
88
746-749
MissingFormLabel
- 31
Kim J S, Shyn K H.
Biometry of 3 types of intraocular lenses using Scheimpflug photography.
J Cataract Refract Surg.
2001;
27
533-536
MissingFormLabel
- 32
Gayton J L, Sanders V N.
Implanting two posterior chamber intraocular lenses in a case of microphthalmos.
J Cataract Refract Surg.
1993;
19
776-777
MissingFormLabel
- 33
Shugar J K, Lewis C, Lee A.
Implantation of multiple foldable acrylic posterior chamber lenses in the capsular
bag for high hyperopia.
J Cataract Refract Surg.
1996;
22 (Suppl 2)
1368-1372
MissingFormLabel
- 34
Kohnen T, Koch M J.
Refractive aspects of cataract surgery.
Curr Opin Ophthalmol.
1998;
9
55-59
MissingFormLabel
- 35
Chang S H, Lim G.
Secondary pigmentary glaucoma associated with piggyback intraocular lens implantation.
J Cataract Refract Surg.
2004;
30
2219-2222
MissingFormLabel
- 36
Häberle H, Wirbelauer C, Aurich H et al.
Huckepacklinsenimplantation zur Korrektur einer Anisometropie bei Pseudophakie.
Ophthalmologe.
2003;
100
129-132
MissingFormLabel
- 37
Mester U, Dillinger P, Anterist N.
Impact of a modified optic design on visual function: clinical comparative study.
J Cataract Refract Surg.
2003;
29
652-660
MissingFormLabel
- 38
Bühren J, Pesudovs K, Martin T et al.
Comparison of optical quality metrics to predict subjective quality of vision after
laser in situ keratomileusis.
J Cataract Refract Surg.
2009;
35
846-855
MissingFormLabel
- 39
Kasper T, Bühren J, Kohnen T.
Intraindividual comparison of higher-order aberrations after implantation of aspherical
and spherical intraocular lenses as a function of pupil diameter.
J Cataract Refract Surg.
2006;
32
78-84
MissingFormLabel
- 40
Baumeister M, Bühren J, Kohnen T.
Tilt and decentration of spherical and aspheric intraocular lenses: effect on higher-order
aberrations.
J Cataract Refract Surg.
2009;
35
1006-1012
MissingFormLabel
- 41
Mester U, Sauer T, Kaymak H.
Decentration and tilt of a single-piece aspheric intraocular lens compared with the
lens position in young phakic eyes.
J Cataract Refract Surg.
2009;
35
485-490
MissingFormLabel
- 42
Artal P, Benito A, Tabernero J.
The human eye is an example of robust optical design.
J Vis.
2006;
6
1-7
MissingFormLabel
- 43
Yang H C, Chung S K, Baek N H.
Decentration, tilt, and near vision of the array multifocal intraocular lens.
Journal of Cataract and Refractive Surgery.
2000;
26
586
MissingFormLabel
- 44
Dick H B, Schwenn O, Krummenauer F et al.
Refraktion, Vorderkammertiefe, Dezentrierung und Tilt nach Implantation monofokaler
und multifokaler Silikonlinsen.
Ophthalmologe.
2001;
98
380-386
MissingFormLabel
- 45
Durak A, Oner H F, Kocak N et al.
Tilt and decentration after primary and secondary transsclerally sutured posterior
chamber intraocular lens implantation.
J Cataract Refract Surg.
2001;
27
227-232
MissingFormLabel
- 46
Hayashi K, Hayashi H, Nakao F et al.
Anterior capsule contraction and intraocular lens decentration and tilt after hydrogel
lens implantation.
Br J Ophthalmol.
2001;
85
1294-1297
MissingFormLabel
- 47
Taketani F, Matuura T, Yukawa E et al.
Influence of intraocular lens tilt and decentration on wavefront aberrations.
J Cataract Refract Surg.
2004;
30
2158-2162
MissingFormLabel
- 48
Hayashi K, Hayashi H.
Comparison of the stability of 1-piece and 3-piece acrylic intraocular lenses in the
lens capsule.
J Cataract Refract Surg.
2005;
31
337-342
MissingFormLabel
- 49
Mutlu F M, Bayer A, Erduman C et al.
Comparison of tilt and decentration between phacoemulsification and phacotrabeculectomy.
Ophthalmologica.
2005;
219
26-29
MissingFormLabel
- 50
Mutlu F M, Erdurman C, Sobaci G et al.
Comparison of tilt and decentration of 1-piece and 3-piece hydrophobic acrylic intraocular
lenses.
J Cataract Refract Surg.
2005;
31
343-347
MissingFormLabel
- 51
Taketani F, Yukawa E, Ueda T et al.
Effect of tilt of 2 acrylic intraocular lenses on high-order aberrations.
J Cataract Refract Surg.
2005;
31
1182-1186
MissingFormLabel
- 52
Oshika T, Sugita G, Miyata K et al.
Influence of tilt and decentration of scleral-sutured intraocular lens on ocular higher-order
wavefront aberration.
Br J Ophthalmol.
2007;
91
185-188
MissingFormLabel
- 53
Castro de A, Rosales P, Marcos S.
Tilt and decentration of intraocular lenses in vivo from Purkinje and Scheimpflug
imaging. Validation study.
J Cataract Refract Surg.
2007;
33
418-429
MissingFormLabel
Prof. Dr. Thomas Kohnen
Klinik für Augenheilkunde, Goethe-Universität
Theodor-Stern-Kai 7
60590 Frankfurt
Phone: ++ 49/69/63 01 39 45
Fax: ++ 49/69/63 01 38 93
Email: kohnen@em.uni-frankfurt.de