Planta Med 2011; 77(2): 122-127
DOI: 10.1055/s-0030-1250204
Biological and Pharmacological Activity
Original Papers
© Georg Thieme Verlag KG Stuttgart · New York

Procyanidins from Apples (Malus pumila Mill.) Extend the Lifespan of Caenorhabditis elegans

Tadahiro Sunagawa1 , Takahiko Shimizu2 , Tomomasa Kanda1 , Motoyuki Tagashira1 , Manabu Sami1 , Takuji Shirasawa2 , 3
  • 1Research Laboratories for Fundamental Technology of Food, Asahi Breweries, Ltd., Ibaraki, Japan
  • 2Molecular Gerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
  • 3Department of Ageing Control Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
Further Information

Publication History

received March 2, 2010 revised July 5, 2010

accepted July 6, 2010

Publication Date:
17 August 2010 (online)

Abstract

Apple polyphenols (AP) mainly consist of procyanidins (PC), which are composed of (−)-epicatechins and (+)-catechins. In order to investigate the antiageing effects of PC, we measured the lifespan of Caenorhabditis elegans worms treated with PC. Treatment with 65 µg/mL PC extended the mean lifespan of wild-type N2 and fem-1 worms by 12.1 % and 8.4 %, respectively, i.e., to a similar extent as resveratrol. In addition, treatment with 100 µg/mL AP also significantly prolonged the mean lifespan of the same worms by 12.0 % and 5.3 %, respectively, i.e., to a similar extent as PC. In contrast, treatment with (−)-epicatechin did not extend the lifespan of the worms. PC did not modify the growth, food intake, or fecundity of C. elegans. Treatment with PC did not extend the lifespan of mev-1 worms, which show excessive oxidative stress, indicating that PC had no antioxidant ability in the mev-1 mutant. Moreover, treatment with PC had no effect on the longevity of sir-2.1 worms, which lack the activity of SIR-2, a member of the sirtuin family of NAD+-dependent protein deacetylases. These results indicated that PC has sir-2.1-dependent antiageing effects on C. elegans.

References

  • 1 Ohnishi-Kameyama M, Yanagida A, Kanda T, Nagata T. Identification of catechin oligomers from apple (Malus pumila cv. Fuji) in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and fast-atom bombardment mass spectrometry.  Rapid Commun Mass Spectrom. 1997;  11 31-36
  • 2 Santos-Buelga C, Scalbert A. Proanthocyanidins and tannin-like compounds: nature, occurrence, dietary intake and effects on nutrition and health.  J Sci Food Agric. 2000;  80 1094-1117
  • 3 Shahat A A, Cos P, De Bruyne T, Apers S, Hammouda F M, Ismail S I, Azzam S, Claeys M, Goovaerts E, Pieters L, Vanden Berghe D, Vlietinck A J. Antiviral and antioxidant activity of flavonoids and proanthocyanidins from Crataegus sinaica.  Planta Med. 2002;  68 539-541
  • 4 van Beek T A. Chemical analysis of Ginkgo biloba leaves and extracts.  J Chromatogr A. 2002;  967 21-55
  • 5 Vennat B, Bos M A, Pourrat A, Bastide P. Procyanidins from tormentil: fractionation and study of the anti-radical activity towards superoxide anion.  Biol Pharm Bull. 1994;  17 1613-1615
  • 6 Pallenbach E, Scholz E, König M, Rimpler H. Proanthocyanidins from Quercus petraea Bark.  Planta Med. 1993;  59 264-268
  • 7 Leontowicz H, Gorinstein S, Lojek A, Leontowicz M, Íž M, Soliva-Fortuny R, Park Y S, Jung S T, Trakhtenberg S, Martin-Belloso O. Comparative content of some bioactive compounds in apples, peaches and pears and their influence on lipids and antioxidant capacity in rats.  J Nutr Biochem. 2002;  13 603-610
  • 8 Akiyama H, Sato Y, Watanabe T, Nagaoka M H, Yoshioka Y, Shoji T, Kanda T, Yamada K, Totsuka M, Teshima R, Sawada J, Goda Y, Maitani T. Dietary unripe apple polyphenol inhibits the development of food allergies in murine models.  FEBS Lett. 2005;  579 4485-4491
  • 9 Hibasami H, Shoji T, Shibuya I, Higo K, Kanda T. Induction of apoptosis by three types of procyanidin isolated from apple (Rosaceae Malus pumila) in human stomach cancer KATO III cells.  Int J Mol Med. 2004;  13 795-799
  • 10 Miura T, Chiba M, Kasai K, Nozaka H, Nakamura T, Shoji T, Kanda T, Ohtake Y, Sato T. Apple procyanidins induce tumor cell apoptosis through mitochondrial pathway activation of caspase-3.  Carcinogenesis. 2008;  29 585-593
  • 11 Osada K, Funayama M, Fuchi S. Effects of dietary procyanidins and tea polyphenols on adipose tissue mass and fatty acid metabolism in rats on a high fat diet.  J Oleo Sci. 2006;  55 79-89
  • 12 Sugiyama H, Akazome Y, Shoji T, Yamaguchi A, Yasue M, Kanda T, Ohtake Y. Oligomeric procyanidins in apple polyphenol are main active components for inhibition of pancreatic lipase and triglyceride absorption.  J Agric Food Chem. 2007;  55 4604-4609
  • 13 Shoji T, Masumoto S, Moriichi N, Akiyama H, Kanda T, Ohtake Y, Goda Y. Apple procyanidin oligomers absorption in rats after oral administration: analysis of procyanidins in plasma using the porter method and high-performance liquid chromatography/tandem mass spectrometry.  J Agric Food Chem. 2006;  54 884-892
  • 14 Lakowski B, Hekimi S. The genetics of caloric restriction in Caenorhabditis elegans.  Proc Natl Acad Sci USA. 1998;  95 13091-13096
  • 15 Harrington L A, Harley C B. Effect of vitamin E on lifespan and reproduction in Caenorhabditis elegans.  Mech Ageing Dev. 1988;  43 71-78
  • 16 Brenner S. The genetics of Caenorhabditis elegans.  Genetics. 1974;  77 71-94
  • 17 Emmons S W, Klass M R, Hirsh D. Analysis of the constancy of DNA sequences during development and evolution of the nematode Caenorhabditis elegans.  Proc Natl Acad Sci USA. 1979;  76 1333-1337
  • 18 Shoji T, Masumoto S, Moriichi N, Kanda T, Ohtake Y. Apple (Malus pumila) procyanidins fractionated according to the degree of polymerization using normal-phase chromatography and characterized by HPLC-ESI/MS and MALDI-TOF/MS.  J Chromatogr A. 2006;  1102 206-213
  • 19 Wood J G, Regina B, Lavu S, Hewitz K, Helfand S L, Tatar M, Sinclair D. Sirtuin activators mimic caloric restriction and delay ageing in metazoans.  Nature. 2004;  430 686-689
  • 20 Bauer J H, Goupil S, Garber G B, Helfand S L. An accelerated assay for the identification of lifespan-extending interventions in Drosophila melanogaster.  Proc Natl Acad Sci USA. 2004;  101 12980-12985
  • 21 Valenzano D R, Terzibasi E, Genade T, Cattaneo A, Domenici L, Cellerino A. Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate.  Curr Biol. 2006;  16 296-300
  • 22 Wilson M A, Shukitt-Hale B, Kalt W, Ingram D K, Joseph J A, Wolkow C A. Blueberry polyphenols increase lifespan and thermotolerance in Caenorhabditis elegans.  Aging Cell. 2006;  5 59-68
  • 23 Shoji T, Masumoto S, Moriichi N, Kobori M, Kanda T, Shinmoto H, Tsushida T. Procyanidin trimers to pentamers fractionated from apple inhibit melanogenesis in B16 mouse melanoma cells.  J Agric Food Chem. 2005;  53 6105-6111
  • 24 Ottaviani J I, Actis-Goretta L, Villordo J J, Fraga C G. Procyanidin structure defines the extent and specificity of angiotensin I converting enzyme inhibition.  Biochimie. 2006;  88 359-365
  • 25 Wink M. Evolutionary advantage and molecular modes of action of multi-component mixtures used in phytomedicine.  Curr Drug Metab. 2008;  9 996-1009
  • 26 Kim J, Takahashi M, Shimizu T, Shirasawa T, Kajita M, Kanayama A, Miyamoto Y. Effects of a potent antioxidant, platinum nanoparticle, on the lifespan of Caenorhabditis elegans.  Mech Ageing Dev. 2008;  129 322-331
  • 27 Abbas S, Wink M. Epigallocatechin gallate from green tea (Camellia sinensis) increases lifespan and stress resistance in Caenorhabditis elegans.  Planta Med. 2009;  75 216-221
  • 28 Senoo-Matsuda N, Yasuda K, Tsuda M, Ohkubo T, Yoshimura S, Nakazawa H, Hartman P S, Ishii N. A defect in the cytochrome b large subunit in complex II causes both superoxide anion overproduction and abnormal energy metabolism in Caenorhabditis elegans.  J Biol Chem. 2001;  276 41553-41558
  • 29 Schulz T J, Zarse K, Voigt A, Urban N, Birringer M, Ristow M. Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress.  Cell Metab. 2007;  6 280-293
  • 30 Howitz K T, Bitterman K J, Cohen H Y, Lamming D W, Lavu S, Wood J G, Zipkin R E, Chung P, Kisielewski A, Zhang L L, Scherer B, Sinclair D A. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan.  Nature. 2003;  425 191-196
  • 31 Tissenbaum H A, Guarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans.  Nature. 2001;  410 227-230
  • 32 Mörck C, Pilon M. C. elegans feeding defective mutants have shorter body lengths and increased autophagy.  BMC Dev Biol. 2006;  6 39
  • 33 Corder R, Mullen W, Khan N Q, Marks S C, Wood E G, Carrier M J, Crozier A. Oenology: red wine procyanidins and vascular health.  Nature. 2006;  444 566
  • 34 Oszmiański J, Wojdyło A, Kolniak J. Effect of enzymatic mash treatment and storage on phenolic composition, antioxidant activity, and turbidity of cloudy apple juice.  J Agric Food Chem. 2009;  57 7078-7085

Prof. Dr. T. Shirasawa

Molecular Gerontology
Tokyo Metropolitan Institute of Gerontology
Department of Ageing Control Medicine
Juntendo University Graduate School of Medicine

35-2 Sakae-cho, Itabashi-ku

173-0015 Tokyo

Japan

3-3-10-201 Hongo, Bunkyo-ku

113-0033 Tokyo

Japan

Phone: + 81 3 39 64 32 41

Fax: + 81 3 35 79 47 76

Email: shimizut@tmig.or.jp

>