Planta Med 2011; 77(5): 441-449
DOI: 10.1055/s-0030-1250458
Biological and Pharmacological Activity
Original Papers
© Georg Thieme Verlag KG Stuttgart · New York

Epifriedelanol from the Root Bark of Ulmus davidiana Inhibits Cellular Senescence in Human Primary Cells

Hyo Hyun Yang1 [*] , Jong-Keun Son2 [*] , Bochan Jung3 [*] , MingShan Zheng2 , 4 , Jae-Ryong Kim1
  • 1Department of Biochemistry and Molecular Biology, Aging-associated Vascular Disease Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea
  • 2College of Pharmacy, Yeungnam University, Gyongsan, Republic of Korea
  • 3Department of Laboratory Medicine, CHA Gumi Medical Center, CHA University, Gyeongsangbuk-do, Republic of Korea
  • 4College of Pharmacy, Yanbian University, Yanji, P. R. China
Further Information

Publication History

received July 28, 2010 revised –

accepted Sept. 28, 2010

Publication Date:
03 November 2010 (online)

Abstract

Since cellular senescence involves organismal aging as well as diverse diseases, aging intervention might contribute to inhibit the aging process as well as aging-associated diseases. We tried to search for effective compounds from the root bark of Ulmus davidiana that are able to inhibit cellular senescence in human fibroblasts (HDFs) and human umbilical vein endothelial cells (HUVECs). Twenty-two compounds from the root bark of U. davidiana were isolated and screened for their inhibitory effects on adriamycin-induced cellular senescence by measuring senescence-associated β-galatosidase (SA-β-gal) activity. Among twenty-two compounds isolated, epifriedelanol (3), ssioriside (15), and catechin-7-O-β-D-glucopyranoside (22) had inhibitory effects on adriamycin-induced cellular senescence in HDFs. Friedelin (2), epifriedelanol (3), and catechin-7-O-β-apiofuranoside (18) were active in HUVECs. In particular, epifriedelanol (3) suppressed adriamycin-induced cellular senescence as well as replicative senescence in HDFs and HUVECs. These results suggest that epifriedelanol (3) reduces cellular senescence in human primary cells and might be used to develop dietary supplements or cosmetics that modulate tissue aging or aging-associated diseases.

References

  • 1 Hayflick L, Moorhead P S. The serial cultivation of human diploid cell strains.  Exp Cell Res. 1961;  25 585-621
  • 2 Collado M, Blasco M A, Serrano M. Cellular senescence in cancer and aging.  Cell. 2007;  130 223-233
  • 3 Patil C K, Mian I S, Campisi J. The thorny path linking cellular senescence to organismal aging.  Mech Ageing Dev. 2005;  126 1040-1045
  • 4 Campisi J. Cellular senescence as a tumor-suppressor mechanism.  Trends Cell Biol. 2001;  11 S27-S31
  • 5 Dimri G P, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano E E, Linskens M, Rubelj I, Pereira-Smith O, Peacocke M, Campisi J. A biomarker that identifies senescent human cells in culture and in aging skin in vivo.  Proc Natl Acad Sci USA. 1995;  92 9363-9367
  • 6 Paradis V, Youssef N, Dargere D, Bâ N, Bonvoust F, Deschatrette J, Bedossa P. Replicative senescence in normal liver, chronic hepatitis C, and hepatocellular carcinomas.  Hum Pathol. 2001;  32 327-332
  • 7 Makrantonaki E, Zouboulis C C. Molecular mechanisms of skin aging: state of the art.  Ann NY Acad Sci. 2007;  1119 40-50
  • 8 Yaar M, Gilchrest B A. Photoageing: mechanism, prevention and therapy.  Br J Pharmacol. 2007;  157 874-887
  • 9 Minamino T, Miyauchi H, Yoshida T, Ishida Y, Yoshida H, Komuro I. Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction.  Circulation. 2002;  105 1541-1544
  • 10 Hayashi T, Matsui-Hirai H, Miyazaki-Akita A, Fukatsu A, Funami J, Ding Q F, Kamalanathan S, Hattori Y, Ignarro L J, Iguchi A. Endothelial cellular senescence is inhibited by nitric oxide: implications in atherosclerosis associated with menopause and diabetes.  Proc Natl Acad Sci USA. 2006;  103 17018-17023
  • 11 Price J S, Waters J G, Darrah C, Pennington C, Edwards D R, Donell S T, Clark I M. The role of chondrocyte senescence in osteoarthritis.  Aging Cell. 2002;  1 57-65
  • 12 Dai S M, Shan Z Z, Nakamura H, Masuko-Hongo K, Kato T, Nishioka K, Yudoh K. Catabolic stress induces features of chondrocyte senescence through overexpression of caveolin 1: possible involvement of caveolin 1-induced down-regulation of articular chondrocytes in the pathogenesis of osteoarthritis.  Arthritis Rheum. 2006;  54 818-831
  • 13 Schmid M, Rodemann H P, Aicher W K. Frequency of terminally differentiated fibroblasts in the synovial membrane of rheumatoid arthritis patients.  Z Rheumatol. 2004;  63 483-489
  • 14 Mendez M V, Stanley A, Park H Y, Shon K, Phillips T, Menzoian J O. Fibroblasts cultured from venous ulcers display cellular characteristics of senescence.  J Vasc Surg. 1998;  28 876-883
  • 15 Harding K G, Moore K, Phillips T J. Wound chronicity and fibroblast senescence–implications for treatment.  Int Wound J. 2005;  2 364-368
  • 16 Wall I B, Moseley R, Baird D M, Kipling D, Giles P, Laffafian I, Price P E, Thomas D W, Stephens P. Fibroblast dysfunction is a key factor in the non-healing of chronic venous leg ulcers.  J Invest Dermatol. 2008;  128 2526-2540
  • 17 Choi J, Shendrik I, Peacocke M, Peehl D, Buttyan R, Ikeguchi E F, Katz A E, Benson M C. Expression of senescence-associated beta-galactosidase in enlarged prostates from men with benign prostatic hyperplasia.  Urology. 2000;  56 160-166
  • 18 Campisi J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors.  Cell. 2005;  120 513-522
  • 19 Kim H J, Kim K S, Kim S H, Baek S H, Kim H Y, Lee C, Kim J R. Induction of cellular senescence by secretory phospholipase A2 in human dermal fibroblasts through an ROS-mediated p 53 pathway.  J Gerontol A Biol Sci Med Sci. 2009;  64 351-362
  • 20 Kim K S, Kang K W, Seu Y B, Baek S H, Kim J R. Interferon-gamma induces cellular senescence through p 53-dependent DNA damage signaling in human endothelial cells.  Mech Ageing Dev. 2009;  130 179-188
  • 21 Demidenko Z N, Blagosklonny M V. At concentrations that inhibit mTOR, resveratrol suppresses cellular senescence.  Cell Cycle. 2009;  8 1901-1904
  • 22 Xia L, Wang X X, Hu X S, Guo X G, Shang Y P, Chen H J, Zeng C L, Zhang F R, Chen J Z. Resveratrol reduces endothelial progenitor cells senescence through augmentation of telomerase activity by Akt-dependent mechanisms.  Br J Pharmacol. 2008;  155 387-394
  • 23 Kim Y H, Kim K S, Han C S, Yang H C, Park S H, Ko K I, Lee S H, Kim K H, Lee N H, Kim J M, Son K H. Inhibitory effects of natural plants of Jeju Island on elastase and MMP-1 expression.  J Cosmet Sci. 2007;  58 19-33
  • 24 Fujimura T, Tsukahara K, Moriwaki S, Hotta M, Kitahara T, Takema Y. A horse chestnut extract, which induces contraction forces in fibroblasts, is a potent anti-aging ingredient.  Int J Cosmet Sci. 2007;  29 140
  • 25 Leu S J, Lin Y P, Lin R D, Wen C L, Cheng K T, Hsu F L, Lee M H. Phenolic constituents of Malus doumeri var. formosana in the field of skin care.  Biol Pharm Bull. 2006;  29 740-745
  • 26 Lee S, Lim J M, Jin M H, Park H K, Lee E J, Kang S, Kim Y S, Cho W G. Partially purified paeoniflorin exerts protective effects on UV-induced DNA damage and reduces facial wrinkles in human skin.  J Cosmet Sci. 2006;  57 57-64
  • 27 Cho Y H, Kim J H, Sim G S, Lee B C, Pyo H B, Park H D. Inhibitory effects of antioxidant constituents from Melothria heterophylla on matrix metalloproteinase-1 expression in UVA-irradiated human dermal fibroblasts.  J Cosmet Sci. 2006;  57 279-289
  • 28 Son B W, Park J H, Zee O P. Catechin glycoside from Ulmus davidiana.  Arch Pharm Res. 1989;  12 219-222
  • 29 Moon Y H, Rim G R. Studies on the constituents of Ulmus parvifolia.  Korean J Pharmacognosy. 1995;  26 1-7
  • 30 Shin M K. Clinical traditional herbalogy. Seoul; Younglimsa 1997: 669-778
  • 31 Lee E B, KIm O K, Jung C S, Jung K H. The influence of methanol extract of Ulmus davidiana var. japonica cortex on gastric erosion and ulcer and paw edema in rats.  Korean J Pharmacol. 1995;  39 671-675
  • 32 Hong N D, Rho Y S, Kim N J, Kim J S. A study on efficacy of Ulmi cortex.  Korean J Pharmacognosy. 1990;  21 217-222
  • 33 Yang Y M, Hyun J W, Lim K H, Sung M S, Kang S S, Paik H W, Bae W K, Cho H, Kim H J, Woo E R, Park H K, Park J G. Antineoplastic effect of extracts from traditional medical plants and various plants (III).  Korean J Pharmacognosy. 1996;  27 105-110
  • 34 Lee Y J, Han J P. Antioxidative activities and nitrite scavenging abilities of extracts from Ulmus davidiana.  J Food Sci Nutr. 2000;  29 893-899
  • 35 Bae Y S, Kim J K. Extractives of the bark of ash and elm as medical hardwood tree species.  Mokjae Konhak. 2000;  28 62-69
  • 36 Lee M K, Sung S H, Lee H S, Cho J H, Kim Y C. Lignan and neolignan glycosides from Ulmus davidiana var. japonica.  Arch Pharm Res. 2001;  24 198-201
  • 37 Kwon Y M, Lee J H, Lee M W. Phenolic compounds from barks of Ulmus macrocarpa and its antioxidative activities.  Korean J Pharmacognosy. 2002;  33 404-410
  • 38 Song Y S, Lee B Y, Hwang E S. Dinstinct ROS and biochemical profiles in cells undergoing DNA damage-induced senescence and apoptosis.  Mech Ageing Dev. 2005;  126 580-590
  • 39 Demidenko Z N, Blagosklonny M V. Growth stimulation leads to cellular senescence when the cell cycle is blocked.  Cell Cycle. 2008;  7 3355-3361
  • 40 Wang D, Xia M, Cui Z. New triterpenoids isolated from the root bark of Ulmus pumila L.  Chem Pharm Bull. 2006;  54 775-778
  • 41 Xie W D, Gao X, Jia Z J. A new C-10 acetylene and a new triterpenoid from Conyza canadensis.  Arch Pharm Res. 2007;  30 547-551
  • 42 Ali M S, Mahmud S, Perveen S, Ahmad V U, Rizwani G H. Epimers from the leaves of Calophyllum inophyllum.  Phytochemistry. 1999;  50 1385-1389
  • 43 Chang C W, Wu T S, Hsieh Y S, Kuo S C, Chao P D. Terpenoids of Syzygium formosanum.  J Nat Prod. 1999;  62 327-328
  • 44 Li S, Chen R Y, Yu D Q. Study on chemical constituents of Myricaria paniculata I.  Zhonggno Zhong Yao Za Zhi. 2007;  32 403-406
  • 45 Nawamaki K, Kuroyanagi M. Sesquiterpenoids from Acorus calamus as germination inhibitors.  Phytochemistry. 1996;  43 1175-1182
  • 46 Umlauf D, Zapp J, Becker H, Adam K P. Biosynthesis of the irregular monoterpene artemisia ketone, the sesquiterpene germacrene D and other isoprenoids in Tanacetum vulgare L. (Asteraceae).  Phytochemistry. 2004;  65 2463-2470
  • 47 Aguirre M C, Delporte C, Backhouse N, Erazo S, Letelier M E, Cassels B K, Silva X, Alegría S, Negrete R. Topical anti-inflammatory activity of 2 alpha-hydroxy pentacyclic triterpene acids from the leaves of Ugni molinae.  Bioorg Med Chem. 2006;  14 5673-5677
  • 48 Sang S, Kikuzaki H, Lapsley K, Rosen R T, Nakatani N, Ho C T. Sphingolipid and other constituents from almond nuts (Prunus amygdalus Batsch).  J Agric Food Chem. 2002;  50 4709-4712
  • 49 Yoo S W, Kim J S, Kang S S, Son K H, Chang H W, Kim H P, Bae K, Lee C O. Constituents of the fruits and leaves of Euodia daniellii.  Arch Pharm Res. 2002;  25 824-830
  • 50 Seebacher W, Simic N, Weis R, Saf R, Kunert O. Complete assignments of 1H and 13C NMR resonances of oleanolic acid, 18-oleanolic acid, ursolic acid and their 11-oxo derivatives.  Megn Reson Chem. 2003;  41 636-638
  • 51 Hisashi K, Haruo O. Configurational studies on hydroxy groups at C-2, 3 and 23 or 24 of oleanene and ursene-type triterpenes by NMR spectroscopy.  Phytochemistry. 1989;  28 1703-1710
  • 52 Liu P, Duan H Q, Pan Q, Zhang Y W, Yao Z. Triterpenes from herb of Potentilla chinesis.  Zhongguo Zhong Yao Za Zhi. 2006;  31 1875-1879
  • 53 Lavaud C, Massiot G, Barrera J B, Moretti C, Le Men-Olivier L. Triterpene saponins from Myrsine pellucida.  Phytochemistry. 1994;  37 1671-1677
  • 54 Smite E, Pan H, Lundgren L N. Lignan glycosides from inner bark of Betula pendula.  Phytochemistry. 1995;  40 341-343
  • 55 Inoshiri S, Sasaki M, Kohda H, Otsuka H, Yamasaki K. Aromatic glycosides from Berchemia racemosa.  Phytochemistry. 1987;  26 2811-2814
  • 56 Yoshinari K, Sashida Y, Shimomura H. Two new lignan xylosides from the barks of Prunus ssiori and Prunus padus.  Chem Pharm Bull. 1989;  37 3301-3303
  • 57 Nahrstedt A, Proksch P, Conn E E. Dhurrin, (−)-catechin, flavonol glycosides and flavones from Chamaebatia foliolosa.  Phytochemistry. 1987;  26 1546-1547
  • 58 Na M K, An R B, Lee S M, Min B S, Kim Y H, Bae K H, Kang S S. Antioxidant compounds from the stem bark of Sorbus commixta.  Nat Prod Sci. 2002;  8 26-29
  • 59 Ishimaru K, Nonaka G-I, Nishioka I. Flavan-3-ol and procyanidin glycosides from Quercus miyagii.  Phytochemistry. 1987;  26 1167-1170
  • 60 Zhang C-Z, Xu X-Z, Li C. Fructosides from Cynomorium songaricum.  Phytochemistry. 1996;  41 975-976
  • 61 Pabst A, Barron D, Semon E, Schreier P. Two diastereomeric 3-oxo-[alpha]-ionol [beta]–glucosides from raspberry fruit.  Phytochemistry. 1992;  31 1649-1652
  • 62 De Marino S, Borbone N, Zollo F, Ianaro A, Di Meglio P, Iorizzi M. Megastigmane and phenolic components from Laurus nobilis L. leaves and their inhibitory effects on nitric oxide production.  J Agric Food Chem. 2004;  52 7525-7531
  • 63 Foo L Y, Karchesy J J. Polyphenolic glycosides from Douglas fir inner bark.  Phytochemistry. 1989;  28 1237-1240
  • 64 Yoon I K, Kim H K, Kim Y K, Song I H, Kim W, Kim S, Baek S H, Kim J H, Kim J R. Exploration of replicative senescence-associated genes in human dermal fibroblasts by cDNA microarray technology.  Exp Gerontol. 2004;  39 1369-1378
  • 65 Kim K S, Kim M S, Seu Y B, Chung H Y, Kim J H, Kim J R. Regulation of replicative senescence by insulin-like growth factor-binding protein 3 in human umbilical vein endothelial cells.  Aging Cell. 2007;  6 535-545
  • 66 Kundu J K, Rouf A S, Hossain M N, Hasan C M, Rashid M A. Antitumor activity of epifriedelanol from Vitis trifolia.  Fitoterapia. 2000;  71 577-579
  • 67 Kim D K, Lim J P, Kim J W, Park H W, Eun J S. Antitumor and antiinflammatory constituents from Celtis sinensis.  Ach Pharm Res. 2005;  28 39-43
  • 68 Van Kiem P, Van Minh C, Huong H T, Nam N H, Lee J J, Kim Y H. Pentacyclic triterpenoids from Mallotus apelta.  Ach Pharm Res. 2004;  27 1109-1113
  • 69 Kuilman T, Peeper D S. Senescence-messaging secretome: SMS-ing cellular stress.  Nat Rev Cancer. 2009;  9 81-94

1 These authors contributed equally to this work.

Prof. Dr. Jae-Ryong Kim

Department of Biochemistry and Molecular Biology
College of Medicine, Yeungnam University

317-1 Daemyung-Dong

Daegu 705-717

Republic of Korea

Phone: +82 5 36 20 43 42

Fax: +82 5 36 54 66 51

Email: kimjr@ynu.ac.kr

>