Planta Med 2011; 77(8): 858-864
DOI: 10.1055/s-0030-1250604
Analytical Studies
Original Papers
© Georg Thieme Verlag KG Stuttgart · New York

Distribution, Synthesis, and Absorption of Kynurenic Acid in Plants

Michal P. Turski1 , Monika Turska1 , Wojciech Zgrajka1 , Magdalena Bartnik2 , Tomasz Kocki3 , Waldemar A. Turski1 , 3
  • 1Department of Toxicology, Institute of Agricultural Medicine, Lublin, Poland
  • 2Department of Pharmacognosy with Medicinal Plant Laboratory, Medical University, Lublin, Poland
  • 3Department of Experimental and Clinical Pharmacology, Medical University, Lublin, Poland
Further Information

Publication History

received May 15, 2009 revised Nov. 8, 2010

accepted Nov. 15, 2010

Publication Date:
14 December 2010 (online)

Abstract

Kynurenic acid (KYNA) is an endogenous antagonist of the ionotropic glutamate receptors and the α7 nicotinic acetylcholine receptor as well as an agonist of the G-protein-coupled receptor GPR35. In this study, KYNA distribution and synthesis in plants as well as its absorption was researched. KYNA level was determined by means of the high-performance liquid chromatography with fluorescence detection. KYNA was found in leaves, flowers, and roots of tested medicinal herbs: dandelion (Taraxacum officinale), common nettle (Urtica dioica), and greater celandine (Chelidonium majus). The highest concentration of this compound was detected in leaves of dandelion – a mean value of 0.49 µg/g wet weight. It was shown that KYNA can be synthesized enzymatically in plants from its precursor, L-kynurenine, or absorbed by plants from the soil. Finally, the content of KYNA was investigated in 21 herbal tablets, herbal tea, herbs in sachets, and single herbs in bags. The highest content of KYNA in a maximum daily dose of herbal medicines appeared in St. John's wort – 33.75 µg (tablets) or 32.60 µg (sachets). The pharmacological properties of KYNA and its presence in high concentrations in medicinal herbs may suggest that it possesses therapeutic potential, especially in the digestive system and should be considered a new valuable dietary supplement.

References

  • 1 Liebig J. Über Kynurensäure.  Justus Liebigs Ann Chem. 1853;  86 125-126
  • 2 Ganong A H, Cotman C W. Kynurenic acid and quinolinic acid act at N-methyl-D-aspartate receptors in the rat hippocampus.  J Pharmacol Exp Ther. 1986;  236 293-299
  • 3 Hilmas C, Pereira E F, Alkondon M, Rassoulpour A, Schwarcz R, Albuquerque E X. The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications.  J Neurosci. 2001;  21 7463-7473
  • 4 Perkins M N, Stone T W. An iontophoretic investigation of the actions of convulsant kynurenines and their interaction with the endogenous excitant quinolinic acid.  Brain Res. 1982;  247 184-187
  • 5 Turski W A, Nakamura M, Todd W P, Carpenter B K, Whetsell Jr W O, Schwarcz R. Identification and quantification of kynurenic acid in human brain tissue.  Brain Res. 1988;  454 164-169
  • 6 Schwarcz R, Pellicciari R. Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities.  J Pharmacol Exp Ther. 2002;  303 1-10
  • 7 Wang J, Simonavicius N, Wu X, Swaminath G, Reagan J, Tian H, Ling L. Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35.  J Biol Chem. 2006;  281 22021-22028
  • 8 Scharfman H E, Goodman J H, Schwarcz R. Electrophysiological effects of exogenous and endogenous kynurenic acid in the rat brain: studies in vivo and in vitro.  Amino Acids. 2000;  19 283-297
  • 9 Wonodi I, Schwarcz R. Cortical kynurenine pathway metabolism: a novel target for cognitive enhancement in schizophrenia.  Schizophr Bull. 2010;  36 211-218
  • 10 Vamos E, Pardutz A, Klivenyi P, Toldi J, Vecsei L. The role of kynurenines in disorders of the central nervous system: possibilities for neuroprotection.  J Neurol Sci. 2009;  283 21-27
  • 11 Erhardt S, Olsson S K, Engberg G. Pharmacological manipulation of kynurenic acid: potential in the treatment of psychiatric disorders.  CNS Drugs. 2009;  23 91-101
  • 12 Kazda H, Taylor N, Healy D, Walker D. Maternal, umbilical, and amniotic fluid concentrations of tryptophan and kynurenine after labor or cesarean section.  Pediatr Res. 1998;  44 368-373
  • 13 Milart P, Sikorski R. Kynurenic acid concentration in blood and urine during normal pregnancy.  Ginekol Pol. 1998;  69 968-973
  • 14 Milart P, Urbanska E M, Turski W A, Paszkowski T, Sikorski R. Intrapartum levels of endogenous glutamate antagonist – kynurenic acid in amniotic fluid, umbilical and maternal blood.  Neurosci Res Commun. 1999;  24 173-178
  • 15 Parada-Turska J, Rzeski W, Zgrajka W, Majdan M, Kandefer-Szerszen M, Turski W. Kynurenic acid, an endogenous constituent of rheumatoid arthritis synovial fluid, inhibits proliferation of synoviocytes in vitro.  Rheumatol Int. 2006;  26 422-426
  • 16 Kuc D, Zgrajka W, Parada-Turska J, Urbanik-Sypniewska T, Turski W A. Micromolar concentration of kynurenic acid in rat small intestine.  Amino Acids. 2008;  35 503-505
  • 17 Glavin G B, Pinsky C. Kynurenic acid attenuates experimental ulcer formation and basal gastric acid secretion in rats.  Res Commun Chem Pathol Pharmacol. 1989;  64 111-119
  • 18 Glavin G B, Pinsky C, Bose R. Gastrointestinal effects of contaminated mussels and putative antidotes thereof.  Can Dis Wkly Rep. 1990;  16 (Suppl. 1E) 111-115
  • 19 Kaszaki J, Palasthy Z, Erczes D, Racz A, Torday C, Varga G, Vecsei L, Boros M. Kynurenic acid inhibits intestinal hypermotility and xanthine oxidase activity during experimental colon obstruction in dogs.  Neurogastroenterol Motil. 2008;  21 53-62
  • 20 Varga G, Erces D, Fazekas B, Fulop M, Kovacs T, Kaszaki J, Fulop F, Vecsei L, Boros M. N-Methyl-D-aspartate receptor antagonism decreases motility and inflammatory activation in the early phase of acute experimental colitis in the rat.  Neurogastroenterol Motil. 2010;  22 217-225
  • 21 Turski M P, Turska M, Zgrajka W, Kuc D, Turski W A. Presence of kynurenic acid in food and honeybee products.  Amino Acids. 2009;  36 75-80
  • 22 Shibata K. Fluorimetric micro-determination of kynurenic acid, an endogenous blocker of neurotoxicity, by high-performance liquid chromatography.  J Chromatogr. 1988;  430 376-380
  • 23 Drieu K. Preparation and definition of Ginkgo biloba extract.  Presse Med. 1986;  15 1455-1457
  • 24 al-Khalil S, Alkofahi A, al-Eisawi D, al-Shibib A. Transtorine, a new quinoline alkaloid from Ephedra transitoria.  J Nat Prod. 1998;  61 262-263
  • 25 Beretta G, Artali R, Caneva E, Orlandini S, Centini M, Facino R M. Quinoline alkaloids in honey: further analytical (HPLC-DAD-ESI-MS, multidimensional diffusion-ordered NMR spectroscopy), theoretical and chemometric studies.  J Pharm Biomed Anal. 2009;  50 432-439
  • 26 Nemeth H, Toldi J, Vecsei L. Role of kynurenines in the central and peripheral nervous systems.  Curr Neurovasc Res. 2005;  2 249-260
  • 27 Paluszkiewicz P, Zgrajka W, Saran T, Schabowski J, Valverde Piedra J L, Fedkiv O, Rengman S, Pierzynowski S G, Turski W A. High concentration of kynurenic acid in bile and pancreatic juice.  Amino Acids. 2009;  37 637-641
  • 28 Turski W A, Schwarcz R. On the disposition of intrahippocampally injected kynurenic acid in the rat.  Exp Brain Res. 1988;  71 563-567
  • 29 Horibata K, Taniuchi H, Tashiro M, Kuno S, Hayaishi O. The metabolism of kynurenic acid. II. Tracer experiments on the mechanism of kynurenic acid degradation and glutamic acid synthesis by Pseudomonas extracts.  J Biol Chem. 1961;  236 2991-2995

Waldemar A. Turski

Department of Toxicology
Institute of Agricultural Medicine

Jaczewskiego 2

20-950 Lublin

Poland

Phone: +48 8 17 18 45 43

Fax: +48 8 17 47 86 46

Email: turskiwa@op.pl

    >