Planta Med 2011; 77(8): 841-845
DOI: 10.1055/s-0030-1250609
Biological and Pharmacological Activity
Letters
© Georg Thieme Verlag KG Stuttgart · New York

Neuroprotective Diarylheptanoids from the Leaves and Twigs of Juglans sinensis against Glutamate-Induced Toxicity in HT22 Cells

Heejung Yang1 , Sang Hyun Sung1 , Jinwoong Kim1 , Young Choong Kim1
  • 1College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, Seoul, Korea
Further Information

Publication History

received October 6, 2010 revised November 16, 2010

accepted November 18, 2010

Publication Date:
14 December 2010 (online)

Abstract

A new diarylheptanoid, juglanin C (1), was isolated from the 80 % methanolic extract of the leaves and twigs of Juglans sinensis with three known diarylheptanoids, juglanin A (2), juglanin B (3), and (5R)-5-hydroxy-7-(4-hydroxy-3-methoxyphenyl)-1(4-hydroxyphenyl)-3-heptanone (4), using bioactivity-guided fractionation and chromatographic techniques. Among the isolated diarylheptanoids, compounds 1 and 2 significantly showed neuroprotective activities against glutamate-induced toxicity in HT22 cells. These two diarylheptanoids significantly reduced the overproduction of cellular peroxide in glutamate-injured HT22 cells. Moreover, these two diarylheptanoids significantly maintained antioxidative defense systems, including glutathione, glutathione reductase, and glutathione peroxidase, under glutamate-induced oxidative stress in HT22 cells.

References

  • 1 de Diego-Otero Y, Romero-Zerbo Y, el Bekay R, Decara J, Sanchez L, Rodriguez-de Fonseca F, del Arco-Herrera I. Alpha-tocopherol protects against oxidative stress in the fragile X knockout mouse: an experimental therapeutic approach for the Fmr1 deficiency.  Neuropsychopharmacology. 2009;  34 1011-1026
  • 2 Kinsella J E, Frankel E, German B, Kanner J. Possible mechanisms for the protective role of antioxidants in wine and plant foods.  Food Technol. 1993;  47 85-89
  • 3 Dinda B, Chowdhury D R, Mohanta B C. Naturally occurring iridoids, secoiridoids and their bioactivity. An updated review, part 3.  Chem Pharm Bull. 2009;  57 765-796
  • 4 Spencer J P, Vauzour D, Rendeiro C. Flavonoids and cognition: the molecular mechanisms underlying their behavioural effects.  Arch Biochem Biophys. 2009;  492 1-9
  • 5 Ramassamy C. Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: a review of their intracellular targets.  Eur J Pharmacol. 2006;  545 51-64
  • 6 Zhao B. Natural antioxidants protect neurons in Alzheimer's disease and Parkinson's disease.  Neurochem Res. 2009;  34 630-638
  • 7 Fukui M, Song J H, Choi J, Choi H J, Zhu B T. Mechanism of glutamate-induced neurotoxicity in HT22 mouse hippocampal cells.  Eur J Pharmacol. 2009;  617 1-11
  • 8 Kang T H, Baek H Y, Kim Y C. Protective effect of jakyak-gamcho-tang extract and its constituents against t-BHP-induced oxidative damage in HT22 cells.  Am J Chin Med. 2005;  33 181-189
  • 9 Breyer A, Elstner M, Gillessen T, Weiser D, Elstner E. Glutamate-induced cell death in neuronal HT22 cells is attenuated by extracts from St. John's wort (Hypericum perforatum L.).  Phytomedicine. 2007;  14 250-255
  • 10 Satoh T, Izumi M. Neuroprotective effects of phenylenediamine derivatives independent of an antioxidant pathway in neuronal HT22 cells.  Neurosci Lett. 2007;  418 102-105
  • 11 Jamarkattel-Pandit N, Pandit N R, Kim M Y, Park S H, Kim K S, Choi H, Kim H, Bu Y. Neuroprotective effect of defatted sesame seeds extract against in vitro and in vivo ischemic neuronal damage.  Planta Med. 2010;  76 20-26
  • 12 Bae K H. Medicinal Plants of Korea. Seoul; Kyo-Hak Publishing Co. 2000: 49
  • 13 Pereira J A, Oliveira I, Sousa A, Valentao P, Andrade P B, Ferreira I C, Ferreres F, Bento A, Seabra R, Estevinho L. Walnut (Juglans regia L.) leaves: phenolic compounds, antibacterial activity and antioxidant potential of different cultivars.  Food Chem Toxicol. 2007;  45 2287-2295
  • 14 Anderson K J, Teuber S S, Gobeille A, Cremin P, Waterhouse A L, Steinberg F M. Walnut polyphenolics inhibit in vitro human plasma and LDL oxidation.  J Nutr. 2001;  131 2837-2842
  • 15 Liu J X, Di D L, Wei X N, Han Y. Cytotoxic diarylheptanoids from the pericarps of walnuts (Juglans regia).  Planta Med. 2008;  74 754-759
  • 16 Fukuda T, Ito H, Yoshida T. Antioxidative polyphenols from walnuts (Juglans regia L.).  Phytochemistry. 2003;  63 795-801
  • 17 Shin D, Kinoshita K, Koyama K, Takahashi K. Antiemetic principles of Alpinia officinarum.  J Nat Prod. 2002;  65 1315-1318
  • 18 Joshi B S, Pelletier S W, Newton M G, Lee D, McGaughey G B, Puar M S. Extensive 1D, 2D NMR spectra of some [7.0]metacyclophanes and X-ray analysis of (±)-myricanol.  J Nat Prod. 1996;  59 759-764
  • 19 Takeda Y, Fujita T, Shingu T, Ogimi C. Studies on the bacterial gall of Myrica rubra – isolation of a new [7,0]-metacyclophan from the gall and Dl-beta-phenyllactic acid from the culture of gall-forming bacteria.  Chem Pharm Bull. 1987;  35 2569-2573
  • 20 Hoye T R, Jeffrey C S, Shao F. Mosher ester analysis for the determination of absolute configuration of stereogenic (chiral) carbinol carbons.  Nat Protoc. 2007;  2 2451-2458
  • 21 Fu Y, Koo M W. EGCG protects HT-22 cells against glutamate-induced oxidative stress.  Neurotox Res. 2006;  10 23-30
  • 22 Lafon-Cazal M, Pietri S, Culcasi M, Bockaert J. NMDA-dependent superoxide production and neurotoxicity.  Nature. 1993;  364 535-537
  • 23 Almeida A, Heales S J, Bolanos J P, Medina J M. Glutamate neurotoxicity is associated with nitric oxide-mediated mitochondrial dysfunction and glutathione depletion.  Brain Res. 1998;  790 209-216
  • 24 Coyle J T, Puttfarcken P. Oxidative stress, glutamate, and neurodegenerative disorders.  Science. 1993;  262 689-695
  • 25 Ma C J, Kim S R, Kim J, Kim Y C. Meso-dihydroguaiaretic acid and licarin A of Machilus thunbergii protect against glutamate-induced toxicity in primary cultures of a rat cortical cells.  Br J Pharmacol. 2005;  146 752-759
  • 26 Lee K Y, Kim S H, Jeong E J, Park J H, Kim Y C, Sung S H. New secoisolariciresinol derivatives from Lindera obtusiloba stems and their neuroprotective activities.  Planta Med. 2010;  76 294-297
  • 27 Goodman Y, Mattson M P. Secreted forms of beta-amyloid precursor protein protect hippocampal neurons against amyloid beta-peptide-induced oxidative injury.  Exp Neurol. 1994;  128 1-12
  • 28 McCord J M, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein).  J Biol Chem. 1969;  244 6049-6055
  • 29 Carlberg I, Mannervik B. Purification and characterization of the flavoenzyme glutathione reductase from rat liver.  J Biol Chem. 1975;  250 5475-5480
  • 30 Flohe L, Gunzler W A. Assays of glutathione peroxidase.  Methods Enzymol. 1984;  105 114-121
  • 31 Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues.  Anal Biochem. 1969;  27 502-522

Prof. PhD Young Choong Kim

College of Pharmacy and Research Institute of Pharmaceutical Sciences
Seoul National University

San 56-1, Sillim-Dong, Gwanak-Gu

Seoul 151-742

Republic of Korea

Phone: + 82 28 80 78 42

Fax: + 82 28 88 29 33

Email: youngkim@snu.ac.kr

>