Synlett 2010(13): 2045-2046  
DOI: 10.1055/s-0030-1258508
SPOTLIGHT
© Georg Thieme Verlag Stuttgart ˙ New York

Bis(benzotriazolyl)methanethione

Archana Singh*
Senior Research Fellow, Department of Chemistry, Faculty of ­Science, Banaras Hindu University, Varanasi 221005, India
e-Mail: archana_chembhu@yahoo.co.in;

Further Information

Publication History

Publication Date:
28 July 2010 (online)

Biographical Sketches

Archana Singh was born in Varanasi, Uttar Pradesh, India, in 1981. She obtained her B.Sc. from the P. G. College in 2003 and her M.Sc. in chemistry from the U. P. College, Varanasi, in 2005. She joined the research group of Dr. Vinod K. Tiwari at the Banaras Hindu University. Her current research is focused on the development of new synthetic methodologies and on carbohydrate synthesis for ­medicinal interests.

Introduction

Bis(benzotriazolyl)methanethione, a reagent derived from benzotriazole, is a thiophosgene equivalent for thioacylations and for the synthesis of different thiocarbonyl compounds. [¹] [²] Compared to thiophosgene, bis- (benzotriazolyl)methanethione is found to be more advantageous due to its high stability and less toxicity. It is a crystalline solid, easy to handle, and it can be stored for years at room temperature. Bis(benzotriazolyl)methan­ethione can be obtained in high yield as yellow crystals (mp 170-171 ˚C) starting from benzotriazole (Scheme  [¹] ). [³]

Scheme 1

Abstracts

(A) Katritzky et al. used 1-(alkyl/arylthiocarbomoyl)benzotriazoles as isothiocyanate equivalents for the efficient synthesis of secondary and tertiary thioureas in high yield. [4]

(B) A facile protocol for the synthesis of diverse 2-thioxo-2,3-dihydroquinazolin-4(1H)-ones by one-pot reaction of anthranilic acid esters, primary amines, and bis(benzotriazolyl)methanethione in the presence of the amidine base DBU has been reported previously. [5a,b]

(C) Further, a one-pot methodology for diverse dithiocabamates including N/S glycosyl dithiocarbamates with various substituents at the thiol, at the amine or at both chains by the reaction of mercaptans, amines, and bis(benzotriazolyl)methanethione in the presence of DBU has been developed. [6a,b]

(D) (Bisbenzotriazol-1-yl-methylene)amines, benzotriazole-1-carboxamidines, and benzotriazole-1-carboximidamides can be synthesized using bis(benzotriazole-1-yl)methanethione reagents. They can readily react with diverse hydroxylamine and hydrazine giving mono-, symmetrical di-N-hydroxy- and N-aminoguanidines with different substitution patterns in good yields. [7]

(E) Thiosemicarbazides and N-hydroxythioureas of diverse substitution patterns have also been synthesized using bis(benzotriazole-1-yl)methanethione as a precursor by reaction of the appropriate hydrazine and corresponding hydroxylamine, respectively. [8]

(F) The Diels-Alder addition of bis(benzotriazole-1-yl)methan­ethione to cyclopentadiene provides the moisture-stable crystalline adduct. [9]

(G) Katritzki et al. have reported the synthesis of acyclic and cyclic 1,2,3-trisubstituted guanidines [¹0] in high yield with a convenient method for the guanylation of various primary and secondary amines by the use of (bisbenzotriazol-1-yl-methylene)amines and benzotriazole-1-carboxamidines. These reagents are prepared by bis(benzotriazole-1-yl)methanethione.

(H) Sasmal et al. reported a bis(benzotriazole-1-yl)methanethione-mediated one-pot methodology for the synthesis of the thiazol ring via N-desilylation and thioacylation followed by cycloisomerization in an intramolecular thia-Michael fashion. [¹¹]

    References

  • 1a Katritzky AR. Belyakov SA. Aldrichimica Acta  1998,  31:  35 
  • 1b Katritzky AR. Lan X. Yang JZ. Denisko OV. Chem. Rev.  1998,  98:  409 
  • 2 Katritzky AR. Witek RM. Rodriguez-Garcia V. Mohapatra PP. Rogers JW. Cusido J. Abdel-Fattah AAA. Steel PJ. J. Org. Chem.  2005,  70:  7866 
  • 3 Orth RE. Soedigdo S. J. Heterocycl. Chem.  1965,  2:  486 
  • 4 Katritzky AR. Ledoux S. Witek RM. Nair SK. J. Org. Chem.  2004,  69:  2976 
  • 5a Tiwari VK. Singh DD. Hussain HA. Mishra BB. Singh A. Monatsh. Chem.  2008,  139:  43 
  • 5b Tiwari VK. Kale RR. Mishra BB. Singh A. ARKIVOC  2008,  (xiv):  27 
  • 6a Tiwari VK. Singh A. Hussain HA. Mishra BB. Tripathi VJ. Monatsh. Chem.  2007,  138:  653 
  • 6b Singh A. Kate RR. Tiwari VK. Trends in Carbohydrate Research   2009,  1:  80 
  • 7 Katritzky AR. Khashab NM. Bobrov S. Yoshioka M. J. Org. Chem.  2006,  71:  6753 
  • 8 Katritzky AR. Khashab NM. Gromova AV. ARKIVOC  2006,  (iii):  226 
  • 9 Larsen C. Harpp DN. J. Org. Chem.  1980,  45:  3713 
  • 10 Katritzky AR. Khashab NM. Bobrov S. Helv. Chim. Acta  2005,  88:  1664 
  • 11 Sasmal PK. Sridhar S. Iqbal J. Tetrahedron Lett.  2006,  47:  8661 

    References

  • 1a Katritzky AR. Belyakov SA. Aldrichimica Acta  1998,  31:  35 
  • 1b Katritzky AR. Lan X. Yang JZ. Denisko OV. Chem. Rev.  1998,  98:  409 
  • 2 Katritzky AR. Witek RM. Rodriguez-Garcia V. Mohapatra PP. Rogers JW. Cusido J. Abdel-Fattah AAA. Steel PJ. J. Org. Chem.  2005,  70:  7866 
  • 3 Orth RE. Soedigdo S. J. Heterocycl. Chem.  1965,  2:  486 
  • 4 Katritzky AR. Ledoux S. Witek RM. Nair SK. J. Org. Chem.  2004,  69:  2976 
  • 5a Tiwari VK. Singh DD. Hussain HA. Mishra BB. Singh A. Monatsh. Chem.  2008,  139:  43 
  • 5b Tiwari VK. Kale RR. Mishra BB. Singh A. ARKIVOC  2008,  (xiv):  27 
  • 6a Tiwari VK. Singh A. Hussain HA. Mishra BB. Tripathi VJ. Monatsh. Chem.  2007,  138:  653 
  • 6b Singh A. Kate RR. Tiwari VK. Trends in Carbohydrate Research   2009,  1:  80 
  • 7 Katritzky AR. Khashab NM. Bobrov S. Yoshioka M. J. Org. Chem.  2006,  71:  6753 
  • 8 Katritzky AR. Khashab NM. Gromova AV. ARKIVOC  2006,  (iii):  226 
  • 9 Larsen C. Harpp DN. J. Org. Chem.  1980,  45:  3713 
  • 10 Katritzky AR. Khashab NM. Bobrov S. Helv. Chim. Acta  2005,  88:  1664 
  • 11 Sasmal PK. Sridhar S. Iqbal J. Tetrahedron Lett.  2006,  47:  8661 

Scheme 1