Synthesis 2011(9): 1477-1483  
DOI: 10.1055/s-0030-1259964
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Propylphosphonic Anhydride (T3P®)-Mediated One-Pot Rearrangement of Carboxylic Acids to Carbamates

John Kallikat Augustine*a, Agnes Bombrunb, Ashis Baran Mandala, Padma Alagarsamya, Rajendra Nath Attaa, Panneer Selvama
a Syngene International Ltd., Biocon Park, Plot Nos. 2 & 3, Bommasandra IV Phase, Jigani Link Road, Bangalore - 560 099, India
Fax: +91(80)28083150; e-Mail: john.kallikat@syngeneintl.com;
b Merck Serono SA, 9 Chemin des Mines, 1202 Geneva, Switzerland
Further Information

Publication History

Received 5 February 2011
Publication Date:
22 March 2011 (online)

Abstract

A simple one-pot conversion of carboxylic acids to carbamates is achieved by propylphosphonic anhydride (T3P®) in combination with azidotrimethylsilane and an alcohol via the Curtius­ rearrangement. Besides diverse primary to tertiary alcohols, the reaction tolerated a wide scope of aromatic, heterocyclic, and ­aliphatic carboxylic acids which underwent rearrangement in ­excellent yields.

    References

  • 1a Curtius T. Chem. Ber.  1890,  23:  3023 
  • 1b Curtius T.
    J. Prakt. Chem.  1894,  50:  275 
  • 1c Curtius T. J. Prakt. Chem.  1915,  91:  39 
  • Reviews:
  • 2a Smith PAS. Org. React.  1946,  3:  337 
  • 2b Saunders JH. Slocombe RJ. Chem. Rev.  1948,  43:  203 
  • 2c Scriven EF. Turnbull K. Chem. Rev.  1988,  88:  297 
  • 2d Shioiri T. Comprehensive Organic Synthesis   Vol. 6:  Trost BM. Fleming I. Pergamon Press; Oxford: 1991.  p.795 
  • For selected examples, see:
  • 3a Van Reijendam JW. Baardman F. Synthesis  1973,  413 
  • 3b Erhardt PW.
    J. Org. Chem.  1979,  44:  883 
  • 3c Pfister JR. Wymann WE. Synthesis  1983,  38 
  • 3d Govindan CK. Org. Process Res. Dev.  2002,  6:  74 
  • 3e Yamatsugu K. Kamijo S. Suto Y. Kanai M. Shibasaki M. Tetrahedron Lett.  2007,  48:  1403 
  • 3f Leathen ML. Peterson EA. Tetrahedron Lett.  2010,  51:  2888 
  • For selected examples, see:
  • 4a Overman LE. Taylor GF. Petty CB. Jessup PJ. J. Org. Chem.  1978,  43:  2164 
  • 4b Remen L. Vasella A. Helv. Chim. Acta  2002,  85:  1118 
  • 4c Englund EA. Gopi HN. Appella DH. Org. Lett.  2004,  6:  213 
  • 4d Dussault PH. Xu C. Tetrahedron Lett.  2004,  45:  7455 
  • 4e Lebel H. Leogane O. Org. Lett.  2005,  7:  4107 
  • 4f Lebel H. Leogane O. Org. Lett.  2006,  8:  5717 
  • For selected examples, see:
  • 5a Nettekoven M. Synlett  2001,  1917 
  • 5b Jean L. Baglin I. Rouden J. Maddaluno J. Lasne MC. Tetrahedron Lett.  2001,  42:  5645 
  • 5c Koza G. Ozcan S. Sahin E. Balci M. Tetrahedron  2009,  65:  5973 
  • For selected examples, see:
  • 6a Shioiri T. Ninomiya K. Yamada S. J. Am. Chem. Soc.  1972,  94:  6203 
  • 6b Ninomiya K. Shioiri T. Yamada S. Tetrahedron  1974,  30:  2151 
  • 6c Capson TL. Poulter CD. Tetrahedron Lett.  1984,  25:  3515 
  • 6d Ma D. Sun H. J. Org. Chem.  2000,  65:  6009 
  • 6e Migawa MT. Swayze EE. Org. Lett.  2000,  2:  3309 
  • 6f Wolff O. Waldvogel SR. Synthesis  2004,  1303 
  • 7 Narendra BN. Lamani RS. Sureshbabu VV. Tetrahedron Lett.  2010,  51:  3002 
  • For other applications of T3P®, see:
  • 8a Wissmann H. Kleiner H.-J. Angew. Chem., Int. Ed. Engl.  1980,  19:  133 
  • 8b Escher R. Bünning P. Angew. Chem., Int. Ed. Engl.  1986,  25:  277 
  • 8c Llanes García AL. Synlett  2007,  1328 
  • 8d Burkhart F. Hoffmann M. Kessler H. Angew. Chem., Int. Ed. Engl.  1997,  36:  1191 
  • 8e Wedel M. Walter A. Montforts F.-P. Eur. J. Org. Chem.  2001,  1681 
  • 8f Hermann S. inventors;  DE10063493.  ; Chem. Abstr. 2002, 137, 47003
  • 8g Meudt A, Scherer S, and Nerdinger S. inventors;  WO2005070879.  ; Chem. Abstr. 2005, 143, 172649
  • 8h Meudt A, Scherer S, and Böhm C. inventors;  WO2005102978.  ; Chem. Abstr. 2005, 143, 440908
  • 8i Zumpe FL. Melanie F. Schmitz K. Lender A. Tetrahedron Lett.  2007,  48:  1421 
  • 8j Augustine JK. Atta RN. Ramappa BK. Boodappa C. Synlett  2009,  3378 
  • 8k Augustine JK. Vairaperumal V. Narasimhan S. Alagarsamy P. Radhakrishnan A. Tetrahedron  2009,  65:  9989 
  • 8l Crawforth JM. Paoletti M. Tetrahedron Lett.  2009,  50:  4916 
  • 8m Augustine JK. Kumar R. Bombrun A. Mandal AB. Tetrahedron Lett.  2011,  52:  1074 
  • 11 Lamothe M. Pauwels PJ. Belliard K. Schambel P. Halazy S. J. Med. Chem.  1997,  40:  3542 
  • 12 Cao J, Gao H, Green J, and Marhefka C. inventors; WO  2004041813. 
  • 13 Mochizuki A, and Nagata T. inventors; EP  1864982. 
  • 14 Benalil A. Roby P. Carboni B. Vaultier M. Synthesis  1991,  787 
  • 15 Zhang Z. Bender CF. Widenhoefer RA. Org. Lett.  2007,  9:  2887 
  • 16 Renslo AR, Gordeev MF, Patel DV, Gao H, and Josyula VPVN. inventors;  WO2004089943. 
  • 17 Bamberg JT, Gabriel T, Krauss NE, Mirzadegan T, Palmer WS, and Smith DB. inventors;  US2004077646. 
  • 18 Makriyannis A, Nikas SP, Alapafuza SO, and Shukla VG. inventors;  WO2009052319. 
  • 19 Kling A, Geneste H, Lange U, Lauterbach A, Graef CI, Subkowski T, Holzenkamp U, Mack H, Sadowski J, Hornberger W, and Laux V. inventors;  US7105508. 
  • 20 Caldwell CG, Finke PE, Maccoss M, Meurer LC, Mills SG, and Oates B. inventors;  US6136827. 
9

For a review on TMSN3, see ref. 2c.

10

The enantiomeric excess was determined by SFC (supercritical-fluid chromatography) using a Chiracel OD column. There was no erosion of the enantiomeric excess during the process and a difference of 1% ee is within the experimental error.