Subscribe to RSS
DOI: 10.1055/s-0030-1260253
Homo- and Heterocoupling of Terminal Conjugated Enynes: One-Pot Synthesis of Alka-1,7-diene-3,5-diynes and Alk-1-ene-3,5-diynes via Two Types of Coupling Reaction
Publication History
Publication Date:
05 October 2011 (online)

Abstract
Conjugated dienediynes and enediynes with definite geometry have been prepared in a one-pot manner. This protocol involves two types of coupling reaction, a Suzuki-type coupling and either a Hay coupling or a Cadiot-Chodkiewicz coupling. Thus, the copper-mediated cross-coupling reaction of (E)-alk-1-enyldisiamylborane with (trimethylsilyl)ethynyl bromide is carried out in the presence of 1 M NaOMe to generate (E)-alk-3-en-1-yne, which is subjected to either palladium/copper-catalyzed homocoupling in the presence of DABCO or copper-catalyzed heterocoupling with 1-iodoalk-1-yne in the presence of TBD or pyrrolidine in a single reaction pot without isolating (E)-alk-3-en-1-yne. The homocoupling has realized the stereoselective construction of (1E,7E)-alka-1,7-diene-3,5-diynes, and the heterocoupling has achieved the formation of (E)-alk-1-ene-3,5-diynes. In addition, starting from (Z)-alk-1-enyldisiamylborane instead of the E-isomer, this series of reactions has led to the formation of (1Z,7Z)-alka-1,7-diene-3,5-diynes and (Z)-alk-1-ene-3,5-diynes, albeit limiting the scope of the substrate.
Key words
alkenylborane - (trimethylsilyl)ethynyl bromide - alk-1-en-3-yne - Suzuki-type reaction - acetylenic coupling
- 1a
Siemsen P.Livingston RC.Diederich F. Angew. Chem. Int. Ed. 2000, 39: 2632 ; and references cited therein - 1b
Metal-Catalyzed
Cross-Coupling Reactions
Vol. 1:
de Meijere A.Diederich F. Wiley-VCH; Weinheim: 2004. - 2
Shi Shun ALK.Tykwinski RR. Angew. Chem. Int. Ed. 2006, 45: 1034 ; and references cited therein - 3a
Tour JM. Acc. Chem. Res. 2000, 33: 791 - 3b
Bunz UHF. Chem. Rev. 2000, 100: 1605 - 3c
Gholami M.Tykwinski RR. Chem. Rev. 2006, 106: 4997 - 4
Hay AS. J. Org. Chem. 1962, 27: 3320 - 5a
Kabalka GW.Wang L.Pagni RM. Synlett 2001, 108 - 5b
Lei A.Srivastava M.Zhang X. J. Org. Chem. 2002, 67: 1969 - 5c
Fairlamb IJS.Bäuerlein PS.Marrison LR.Dickinson JM. Chem. Commun. 2003, 632 - 5d
Liao Y.Fathi R.Yang Z. Org. Lett. 2003, 5: 909 - 5e
Yadav JS.Reddy BVS.Reddy KB.Gayathri KU.Prasad AR. Tetrahedron Lett. 2003, 44: 6493 - 5f
Batsanov AS.Collings JC.Fairlamb IJS.Holland JP.Howard JAK.Lin Z.Marder TB.Parsons AC.Ward RM.Zhu J. J. Org. Chem. 2005, 70: 703 - 5g
Li J.-H.Liang Y.Zhang X.-D. Tetrahedron 2005, 61: 1903 - 5h
Li J.-H.Liang Y.Xie Y.-X. J. Org. Chem. 2005, 70: 4393 - 5i
Jiang H.-F.Tang J.-Y.Wang A.-Z.Deng G.-H.Yang S.-R. Synthesis 2006, 1155 - 5j
Shi M.Qian H.-X. Appl. Organomet. Chem. 2006, 20: 771 - 5k
Zhu BC.Jiang XZ. Appl. Organomet. Chem. 2007, 21: 345 - 5l
Yan J.Lin F.Yang Z. Synthesis 2007, 1301 - 5m
Yan F.Cui X.Li Y.-N.Zhang J.Ren G.-R.Wu Y. Tetrahedron 2007, 63: 1963 - 5n
Kurita T.Abe M.Maegawa T.Monguchi Y.Sajiki H. Synlett 2007, 2521 - 5o
Yan J.Wu J.Jin H. J. Organomet. Chem. 2007, 692: 3636 - 5p
Kamata K.Yamaguchi S.Kotani M.Yamaguchi K.Mizuno N. Angew. Chem. Int. Ed. 2008, 47: 2407 - 5q
Li D.Yin K.Li J.Jia X. Tetrahedron Lett. 2008, 49: 5918 - 5r
Chen S.-N.Wu W.-Y.Tsai F.-Y. Green Chem. 2009, 11: 269 - 5s
Kuhn P.Alix A.Kumarraja M.Louis B.Pale P.Sommer J. Eur. J. Org. Chem. 2009, 423 - 5t
Hilt G.Hengst C.Arndt M. Synthesis 2009, 395 - 5u
Li L.Wang J.Zhang G.Liu Q. Tetrahedron Lett. 2009, 50: 4033 - 5v
Oishi T.Katayama T.Yamaguchi K.Mizuno N. Chem. Eur. J. 2009, 15: 7539 - 5w
Adimurthy S.Malakar CC.Beifuss U. J. Org. Chem. 2009, 74: 5648 - 5x
Chassaaing S.Alix A.Boningari T.Sani Souna Sido K.Keller M.Kuhn P.Louis B.Sommer J.Pale P. Synthesis 2010, 1557 - 5y
Balaraman K.Kesavan V. Synthesis 2010, 3461 - 6a
Damle SV.Seomoon D.Lee PH. J. Org. Chem. 2003, 68: 7085 - 6b
Chen Z.Jiang H.Wang A.Yang S. J. Org. Chem. 2010, 75: 6700 - 7a
Ikegashira K.Nishihara Y.Hirabayashi K.Mori A.Hiyama T. Chem. Commun. 1997, 1039 - 7b
Ishikawa T.Ogawa A.Hirao T. Organometallics 1998, 17: 5713 - 7c
Nishihara Y.Ikegashira K.Hirabayashi K.Ando J.Mori A.Hiyama T. J. Org. Chem. 2000, 65: 1780 - 7d
Bharathi P.Periasamy M. Organometallics 2000, 19: 5511 - 7e
Shirakawa E.Nakao Y.Murota Y.Hiyama T. J. Organomet. Chem. 2003, 670: 132 - 7f
Yoshida H.Yamaryo Y.Ohshita J.Kunai A. Chem. Commun. 2003, 1510 - 7g
Oh CH.Reddy VR. Tetrahedron Lett. 2004, 45: 5221 - 7h
Nishihara Y.Okamoto M.Inoue Y.Miyazaki M.Miyasaka M.Takagi K. Tetrahedron Lett. 2005, 46: 8661 - 7i
Krasovskiy A.Tishkov A.del Amo V.Mayr H.Knochel P. Angew. Chem. Int. Ed. 2006, 45: 5010 - 7j
Cahiez G.Moyeux A.Buendia J.Duplais C.
J. Am. Chem. Soc. 2007, 129: 13788 - 7k
Paixão MW.Weber M.Braga AL.de Azeredo JB.Deobald AM.Stefani HA. Tetrahedron Lett. 2008, 49: 2366 - 7l
Maji MS.Pfeifer T.Studer A. Angew. Chem. Int. Ed. 2008, 47: 9547 - 7m
Singh FV.Amaral MFZJ.Stefani HA. Tetrahedron Lett. 2009, 50: 2636 - 8
Cadiot P.Chodkiewicz W. In Chemistry of AcetylenesViehe HG. Dekker; New York: 1969. p.597 - 9a
Wityak J.Chan JB. Synth. Commun. 1991, 21: 977 - 9b
Cai C.Vasella A. Helv. Chim. Acta 1995, 78: 2053 - 9c
Alami M.Ferri F. Tetrahedron Lett. 1996, 37: 2763 - 9d
Barbu E.Tsibouklis J. Tetrahedron Lett. 1996, 37: 5023 - 9e
Montierth JM.DeMario DR.Kurth MJ.Schore NE. Tetrahedron 1998, 54: 11741 - 9f
Marino JP.Nguyen HN. J. Org. Chem. 2002, 67: 6841 - 9g
Jiang H.-F.Wang A.-Z. Synthesis 2007, 1649 - 10a
Nye SA.Potts KT. Synthesis 1988, 375 - 10b
Balova IA.Morozkina SN.Knight DW.Vasilevsky SF. Tetrahedron Lett. 2003, 44: 107 - 10c
Fiandanese V.Bottalico D.Marchese G.Punzi A. Tetrahedron Lett. 2003, 44: 9087 - 10d
Liang Y.Tao L.-M.Zhang Y.-H.Li J.-H. Synthesis 2008, 3988 - 11a
Kwon JH.Lee ST.Shim SC.Hoshino M. J. Org. Chem. 1994, 59: 1108 - 11b
Alami M.Crousse B.Linstrumelle G. Tetrahedron Lett. 1995, 36: 3687 - 11c
Negishi E.Hata M.Xu C. Org. Lett. 2000, 2: 3687 - 12a
Ziegler CB.Harris SM.Baldwin JE. J. Org. Chem. 1987, 52: 443 - 12b
Nishihara Y.Ikegashira K.Mori A.Hiyama T. Tetrahedron Lett. 1998, 39: 4075 - 12c
Shen W.Thomas SA. Org. Lett. 2000, 2: 2857 - 12d
Shin Shun ALK.Chernick ET.Eisler S.Tykwinski RR. J. Org. Chem. 2003, 68: 1339 - 12e
Yin W.He C.Chen M.Zhang H.Lei A. Org. Lett. 2009, 11: 709 - 12f
Coste A.Couty F.Evano G. Synthesis 2010, 1500 - 13a
Hoshi M.Nakayabu H.Shirakawa K. Synthesis 2005, 1991 - 13b
Hoshi M.Suzuki S.Saitoh S.Okimoto M.Shirakawa K. Tetrahedron Lett. 2007, 48: 119 - 13c
Hoshi M.Iizawa T.Okimoto M.Shirakawa K. Synthesis 2008, 3591 - 13d
Hoshi M.Yamazaki H.Okimoto M. Synlett 2010, 2461 - 14a
Hoshi M.Shirakawa K. Synlett 2002, 1101 - 14b
Hoshi M.Kawamura N.Shirakawa K. Synthesis 2006, 1961 - 17
Negishi E.Williams RM.Lew G.Yoshida T. J. Organomet. Chem. 1975, 92: C4 - 19
Hofmeister H.Annen K.Laurent H.Wiechert R. Angew. Chem., Int. Ed. Engl. 1984, 23: 727 - 20
Southwick PL.Kirchiner JR. J. Org. Chem. 1962, 27: 3305 - 21
Schulte KE.Goes M. Arch. Pharm. (Weinheim, Ger.) 1959, 290: 118 - 22a
Zweifel G.Brown HC. Org. React. 1963, 13: 1 - 22b
Brown HC. Organic Syntheses via Boranes Wiley-Interscience; New York: 1975.
References
Compound 2a was formed in about 75% GC yield based on Me3SiCºCBr used; unpublished results.
16In the original procedure ethyl bromoacetate was used as the oxidant.
18Compounds 5a and 5b were formed in 72-75% GC yield based on Me3SiCºCBr used; unpublished results.