Abstract
Conjugated dienediynes and enediynes with definite geometry have
been prepared in a one-pot manner. This protocol involves two types
of coupling reaction, a Suzuki-type coupling and either a Hay coupling
or a Cadiot-Chodkiewicz coupling. Thus, the copper-mediated
cross-coupling reaction of (E )-alk-1-enyldisiamylborane
with (trimethylsilyl)ethynyl bromide is carried out in the presence
of 1 M NaOMe to generate (E )-alk-3-en-1-yne,
which is subjected to either palladium/copper-catalyzed
homocoupling in the presence of DABCO or copper-catalyzed heterocoupling
with 1-iodoalk-1-yne in the presence of TBD or pyrrolidine in a
single reaction pot without isolating (E )-alk-3-en-1-yne.
The homocoupling has realized the stereoselective construction of
(1E ,7E )-alka-1,7-diene-3,5-diynes,
and the heterocoupling has achieved the formation of (E )-alk-1-ene-3,5-diynes. In addition,
starting from (Z )-alk-1-enyldisiamylborane
instead of the E -isomer, this series
of reactions has led to the formation of (1Z ,7Z )-alka-1,7-diene-3,5-diynes and (Z )-alk-1-ene-3,5-diynes, albeit limiting
the scope of the substrate.
Key words
alkenylborane - (trimethylsilyl)ethynyl bromide - alk-1-en-3-yne - Suzuki-type reaction
- acetylenic coupling
References
<A NAME="RF75711SS-1A">1a </A>
Siemsen P.
Livingston RC.
Diederich F.
Angew. Chem. Int. Ed.
2000,
39:
2632 ; and references cited therein
<A NAME="RF75711SS-1B">1b </A>
Metal-Catalyzed
Cross-Coupling Reactions
Vol. 1:
de Meijere A.
Diederich F.
Wiley-VCH;
Weinheim:
2004.
<A NAME="RF75711SS-2">2 </A>
Shi Shun ALK.
Tykwinski RR.
Angew.
Chem. Int. Ed.
2006,
45:
1034 ;
and references cited therein
<A NAME="RF75711SS-3A">3a </A>
Tour JM.
Acc. Chem. Res.
2000,
33:
791
<A NAME="RF75711SS-3B">3b </A>
Bunz UHF.
Chem. Rev.
2000,
100:
1605
<A NAME="RF75711SS-3C">3c </A>
Gholami M.
Tykwinski RR.
Chem. Rev.
2006,
106:
4997
<A NAME="RF75711SS-4">4 </A>
Hay AS.
J.
Org. Chem.
1962,
27:
3320
<A NAME="RF75711SS-5A">5a </A>
Kabalka GW.
Wang L.
Pagni RM.
Synlett
2001,
108
<A NAME="RF75711SS-5B">5b </A>
Lei A.
Srivastava M.
Zhang X.
J.
Org. Chem.
2002,
67:
1969
<A NAME="RF75711SS-5C">5c </A>
Fairlamb IJS.
Bäuerlein PS.
Marrison LR.
Dickinson JM.
Chem. Commun.
2003,
632
<A NAME="RF75711SS-5D">5d </A>
Liao Y.
Fathi R.
Yang Z.
Org.
Lett.
2003,
5:
909
<A NAME="RF75711SS-5E">5e </A>
Yadav JS.
Reddy BVS.
Reddy KB.
Gayathri KU.
Prasad AR.
Tetrahedron
Lett.
2003,
44:
6493
<A NAME="RF75711SS-5F">5f </A>
Batsanov AS.
Collings JC.
Fairlamb IJS.
Holland JP.
Howard JAK.
Lin Z.
Marder TB.
Parsons AC.
Ward RM.
Zhu J.
J. Org. Chem.
2005,
70:
703
<A NAME="RF75711SS-5G">5g </A>
Li J.-H.
Liang Y.
Zhang X.-D.
Tetrahedron
2005,
61:
1903
<A NAME="RF75711SS-5H">5h </A>
Li J.-H.
Liang Y.
Xie Y.-X.
J.
Org. Chem.
2005,
70:
4393
<A NAME="RF75711SS-5I">5i </A>
Jiang H.-F.
Tang J.-Y.
Wang A.-Z.
Deng G.-H.
Yang S.-R.
Synthesis
2006,
1155
<A NAME="RF75711SS-5J">5j </A>
Shi M.
Qian H.-X.
Appl. Organomet. Chem.
2006,
20:
771
<A NAME="RF75711SS-5K">5k </A>
Zhu BC.
Jiang XZ.
Appl. Organomet. Chem.
2007,
21:
345
<A NAME="RF75711SS-5L">5l </A>
Yan J.
Lin F.
Yang Z.
Synthesis
2007,
1301
<A NAME="RF75711SS-5M">5m </A>
Yan F.
Cui X.
Li Y.-N.
Zhang J.
Ren G.-R.
Wu Y.
Tetrahedron
2007,
63:
1963
<A NAME="RF75711SS-5N">5n </A>
Kurita T.
Abe M.
Maegawa T.
Monguchi Y.
Sajiki H.
Synlett
2007,
2521
<A NAME="RF75711SS-5O">5o </A>
Yan J.
Wu J.
Jin H.
J.
Organomet. Chem.
2007,
692:
3636
<A NAME="RF75711SS-5P">5p </A>
Kamata K.
Yamaguchi S.
Kotani M.
Yamaguchi K.
Mizuno N.
Angew.
Chem. Int. Ed.
2008,
47:
2407
<A NAME="RF75711SS-5Q">5q </A>
Li D.
Yin K.
Li J.
Jia X.
Tetrahedron Lett.
2008,
49:
5918
<A NAME="RF75711SS-5R">5r </A>
Chen S.-N.
Wu W.-Y.
Tsai F.-Y.
Green
Chem.
2009,
11:
269
<A NAME="RF75711SS-5S">5s </A>
Kuhn P.
Alix A.
Kumarraja M.
Louis B.
Pale P.
Sommer J.
Eur. J. Org. Chem.
2009,
423
<A NAME="RF75711SS-5T">5t </A>
Hilt G.
Hengst C.
Arndt M.
Synthesis
2009,
395
<A NAME="RF75711SS-5U">5u </A>
Li L.
Wang J.
Zhang G.
Liu Q.
Tetrahedron Lett.
2009,
50:
4033
<A NAME="RF75711SS-5V">5v </A>
Oishi T.
Katayama T.
Yamaguchi K.
Mizuno N.
Chem. Eur. J.
2009,
15:
7539
<A NAME="RF75711SS-5W">5w </A>
Adimurthy S.
Malakar CC.
Beifuss U.
J.
Org. Chem.
2009,
74:
5648
<A NAME="RF75711SS-5X">5x </A>
Chassaaing S.
Alix A.
Boningari T.
Sani Souna Sido K.
Keller M.
Kuhn P.
Louis B.
Sommer J.
Pale P.
Synthesis
2010,
1557
<A NAME="RF75711SS-5Y">5y </A>
Balaraman K.
Kesavan V.
Synthesis
2010,
3461
<A NAME="RF75711SS-6A">6a </A>
Damle SV.
Seomoon D.
Lee PH.
J. Org. Chem.
2003,
68:
7085
<A NAME="RF75711SS-6B">6b </A>
Chen Z.
Jiang H.
Wang A.
Yang S.
J. Org. Chem.
2010,
75:
6700
<A NAME="RF75711SS-7A">7a </A>
Ikegashira K.
Nishihara Y.
Hirabayashi K.
Mori A.
Hiyama T.
Chem. Commun.
1997,
1039
<A NAME="RF75711SS-7B">7b </A>
Ishikawa T.
Ogawa A.
Hirao T.
Organometallics
1998,
17:
5713
<A NAME="RF75711SS-7C">7c </A>
Nishihara Y.
Ikegashira K.
Hirabayashi K.
Ando J.
Mori A.
Hiyama T.
J. Org. Chem.
2000,
65:
1780
<A NAME="RF75711SS-7D">7d </A>
Bharathi P.
Periasamy M.
Organometallics
2000,
19:
5511
<A NAME="RF75711SS-7E">7e </A>
Shirakawa E.
Nakao Y.
Murota Y.
Hiyama T.
J. Organomet. Chem.
2003,
670:
132
<A NAME="RF75711SS-7F">7f </A>
Yoshida H.
Yamaryo Y.
Ohshita J.
Kunai A.
Chem. Commun.
2003,
1510
<A NAME="RF75711SS-7G">7g </A>
Oh CH.
Reddy VR.
Tetrahedron Lett.
2004,
45:
5221
<A NAME="RF75711SS-7H">7h </A>
Nishihara Y.
Okamoto M.
Inoue Y.
Miyazaki M.
Miyasaka M.
Takagi K.
Tetrahedron Lett.
2005,
46:
8661
<A NAME="RF75711SS-7I">7i </A>
Krasovskiy A.
Tishkov A.
del Amo V.
Mayr H.
Knochel P.
Angew.
Chem. Int. Ed.
2006,
45:
5010
<A NAME="RF75711SS-7J">7j </A>
Cahiez G.
Moyeux A.
Buendia J.
Duplais C.
J. Am. Chem. Soc.
2007,
129:
13788
<A NAME="RF75711SS-7K">7k </A>
Paixão MW.
Weber M.
Braga AL.
de Azeredo JB.
Deobald AM.
Stefani HA.
Tetrahedron Lett.
2008,
49:
2366
<A NAME="RF75711SS-7L">7l </A>
Maji MS.
Pfeifer T.
Studer A.
Angew. Chem. Int. Ed.
2008,
47:
9547
<A NAME="RF75711SS-7M">7m </A>
Singh FV.
Amaral MFZJ.
Stefani HA.
Tetrahedron Lett.
2009,
50:
2636
<A NAME="RF75711SS-8">8 </A>
Cadiot P.
Chodkiewicz W. In Chemistry
of Acetylenes
Viehe HG.
Dekker;
New
York:
1969.
p.597
<A NAME="RF75711SS-9A">9a </A>
Wityak J.
Chan JB.
Synth.
Commun.
1991,
21:
977
<A NAME="RF75711SS-9B">9b </A>
Cai C.
Vasella A.
Helv. Chim. Acta
1995,
78:
2053
<A NAME="RF75711SS-9C">9c </A>
Alami M.
Ferri F.
Tetrahedron Lett.
1996,
37:
2763
<A NAME="RF75711SS-9D">9d </A>
Barbu E.
Tsibouklis J.
Tetrahedron Lett.
1996,
37:
5023
<A NAME="RF75711SS-9E">9e </A>
Montierth JM.
DeMario DR.
Kurth MJ.
Schore NE.
Tetrahedron
1998,
54:
11741
<A NAME="RF75711SS-9F">9f </A>
Marino JP.
Nguyen HN.
J.
Org. Chem.
2002,
67:
6841
<A NAME="RF75711SS-9G">9g </A>
Jiang H.-F.
Wang A.-Z.
Synthesis
2007,
1649
<A NAME="RF75711SS-10A">10a </A>
Nye SA.
Potts KT.
Synthesis
1988,
375
<A NAME="RF75711SS-10B">10b </A>
Balova IA.
Morozkina SN.
Knight DW.
Vasilevsky SF.
Tetrahedron
Lett.
2003,
44:
107
<A NAME="RF75711SS-10C">10c </A>
Fiandanese V.
Bottalico D.
Marchese G.
Punzi A.
Tetrahedron Lett.
2003,
44:
9087
<A NAME="RF75711SS-10D">10d </A>
Liang Y.
Tao L.-M.
Zhang Y.-H.
Li J.-H.
Synthesis
2008,
3988
<A NAME="RF75711SS-11A">11a </A>
Kwon JH.
Lee ST.
Shim SC.
Hoshino M.
J.
Org. Chem.
1994,
59:
1108
<A NAME="RF75711SS-11B">11b </A>
Alami M.
Crousse B.
Linstrumelle G.
Tetrahedron
Lett.
1995,
36:
3687
<A NAME="RF75711SS-11C">11c </A>
Negishi E.
Hata M.
Xu C.
Org.
Lett.
2000,
2:
3687
<A NAME="RF75711SS-12A">12a </A>
Ziegler CB.
Harris SM.
Baldwin JE.
J.
Org. Chem.
1987,
52:
443
<A NAME="RF75711SS-12B">12b </A>
Nishihara Y.
Ikegashira K.
Mori A.
Hiyama T.
Tetrahedron Lett.
1998,
39:
4075
<A NAME="RF75711SS-12C">12c </A>
Shen W.
Thomas SA.
Org. Lett.
2000,
2:
2857
<A NAME="RF75711SS-12D">12d </A>
Shin Shun ALK.
Chernick ET.
Eisler S.
Tykwinski RR.
J.
Org. Chem.
2003,
68:
1339
<A NAME="RF75711SS-12E">12e </A>
Yin W.
He C.
Chen M.
Zhang H.
Lei A.
Org. Lett.
2009,
11:
709
<A NAME="RF75711SS-12F">12f </A>
Coste A.
Couty F.
Evano G.
Synthesis
2010,
1500
<A NAME="RF75711SS-13A">13a </A>
Hoshi M.
Nakayabu H.
Shirakawa K.
Synthesis
2005,
1991
<A NAME="RF75711SS-13B">13b </A>
Hoshi M.
Suzuki S.
Saitoh S.
Okimoto M.
Shirakawa K.
Tetrahedron
Lett.
2007,
48:
119
<A NAME="RF75711SS-13C">13c </A>
Hoshi M.
Iizawa T.
Okimoto M.
Shirakawa K.
Synthesis
2008,
3591
<A NAME="RF75711SS-13D">13d </A>
Hoshi M.
Yamazaki H.
Okimoto M.
Synlett
2010,
2461
<A NAME="RF75711SS-14A">14a </A>
Hoshi M.
Shirakawa K.
Synlett
2002,
1101
<A NAME="RF75711SS-14B">14b </A>
Hoshi M.
Kawamura N.
Shirakawa K.
Synthesis
2006,
1961
<A NAME="RF75711SS-15">15 </A>
Compound 2a was
formed in about 75% GC yield based on Me3 SiCºCBr
used; unpublished results.
<A NAME="RF75711SS-16">16 </A>
In the original procedure ethyl bromoacetate
was used as the oxidant.
<A NAME="RF75711SS-17">17 </A>
Negishi E.
Williams RM.
Lew G.
Yoshida T.
J. Organomet. Chem.
1975,
92:
C4
<A NAME="RF75711SS-18">18 </A>
Compounds 5a and 5b were formed in 72-75% GC
yield based on Me3 SiCºCBr used; unpublished results.
<A NAME="RF75711SS-19">19 </A>
Hofmeister H.
Annen K.
Laurent H.
Wiechert R.
Angew. Chem., Int. Ed. Engl.
1984,
23:
727
<A NAME="RF75711SS-20">20 </A>
Southwick PL.
Kirchiner JR.
J. Org. Chem.
1962,
27:
3305
<A NAME="RF75711SS-21">21 </A>
Schulte KE.
Goes M.
Arch. Pharm. (Weinheim, Ger.)
1959,
290:
118
<A NAME="RF75711SS-22A">22a </A>
Zweifel G.
Brown HC.
Org.
React.
1963,
13:
1
<A NAME="RF75711SS-22B">22b </A>
Brown HC.
Organic Syntheses via
Boranes
Wiley-Interscience;
New
York:
1975.