Am J Perinatol 2011; 28(7): 521-528
DOI: 10.1055/s-0031-1272970
© Thieme Medical Publishers

Lung Recruitment Maneuver during Volume Guarantee Ventilation of Preterm Infants with Acute Respiratory Distress Syndrome

Francesca Castoldi1 , Irene Daniele1 , Paola Fontana1 , Francesco Cavigioli1 , Enrica Lupo1 , Gianluca Lista1
  • 1Neonatal Intensive Care Unit, V. Buzzi Children's Hospital ICP, Milan, Italy
Further Information

Publication History

Publication Date:
04 March 2011 (online)

ABSTRACT

Preterm infants need the achievement of adequate lung volume. Lung recruitment maneuver (LRM) is applied during high-frequency oscillatory ventilation. We investigated the effect of an LRM with positive end-expiratory pressure (PEEP) on oxygenation and outcomes in infants conventionally ventilated for respiratory distress syndrome (RDS). Preterm infants in assisted controlled ventilation + volume guarantee for RDS after surfactant randomly received an LRM (group A) or did not (group B). LRM entailed increments of 0.2 cm H2O PEEP every 5 minutes, until fraction of inspired oxygen (Fio 2) = 0.25. Then PEEP was reduced and the lung volume was set on the deflation limb of the pressure/volume curve. When saturation of peripheral oxygen fell and Fio 2 rose, we reincremented PEEP until Spo 2 became stable. Group A (n = 10) and group B (n = 10) infants were similar: gestational age 25 ± 2 versus 25 ± 2 weeks; body weight 747 ± 233 versus 737 ± 219 g; clinical risk index for babies 9.8 versus 8.1; initial Fio 2 56 ± 24 versus 52 ± 21, respectively. LRM began at 86 ± 69 minutes of age and lasted for 61 ± 18 minutes. Groups A and B showed different max PEEP during the first 12 hours of life (6.1 ± 0.3 versus 5.3 ± 0.3 cm H2O, p = 0.00), time to lowest Fio 2 (94 ± 24 versus 435 ± 221 minutes; p = 0.000) and O2 dependency (29 ± 12 versus 45 ± 17 days; p = 0.04). No adverse events and no differences in the outcomes were observed. LRM led to the earlier lowest Fio 2 of the first 12 hours of life and a shorter O2 dependency.

REFERENCES

  • 1 Bancalari E, Claure N, Sosenko I R. Bronchopulmonary dysplasia: changes in pathogenesis, epidemiology and definition.  Semin Neonatol. 2003;  8 63-71
  • 2 Ramanathan R, Sardesai S. Lung protective ventilatory strategies in very low birth weight infants.  J Perinatol. 2008;  28 (Suppl 1) S41-S46
  • 3 Allison B J, Crossley K J, Flecknoe S J et al.. Ventilation of the very immature lung in utero induces injury and BPD-like changes in lung structure in fetal sheep.  Pediatr Res. 2008;  64 387-392
  • 4 Marchak B E, Thompson W K, Duffty P et al.. Treatment of RDS by high-frequency oscillatory ventilation: a preliminary report.  J Pediatr. 1981;  99 287-292
  • 5 Taskar V, John J, Evander E, Robertson B, Jonson B. Surfactant dysfunction makes lungs vulnerable to repetitive collapse and reexpansion.  Am J Respir Crit Care Med. 1997;  155 313-320
  • 6 McCulloch P R, Forkert P G, Froese A B. Lung volume maintenance prevents lung injury during high frequency oscillatory ventilation in surfactant-deficient rabbits.  Am Rev Respir Dis. 1988;  137 1185-1192
  • 7 Cools F, Henderson-Smart D J, Offringa M, Askie L M. Elective high frequency oscillatory ventilation versus conventional ventilation for acute pulmonary dysfunction in preterm infants.  Cochrane Database Syst Rev. 2009;  (3) CD000104 (Review)
  • 8 Thome U H, Carlo W A, Pohlandt F. Ventilation strategies and outcome in randomised trials of high frequency ventilation.  Arch Dis Child Fetal Neonatal Ed. 2005;  90 F466-F473
  • 9 Bollen C W, Uiterwaal C S, van Vught A J. Cumulative metaanalysis of high-frequency versus conventional ventilation in premature neonates.  Am J Respir Crit Care Med. 2003;  168 1150-1155
  • 10 McCallion N, Davis P G, Morley C J. Volume-targeted versus pressure-limited ventilation in the neonate.  Cochrane Database Syst Rev. 2005;  (3) CD003666
  • 11 Keszler M. State of the art in conventional mechanical ventilation.  J Perinatol. 2009;  29 262-275
  • 12 Frank J A, Matthay M A. Science review: mechanisms of ventilator-induced injury.  Crit Care. 2003;  7 233-241
  • 13 Dellacà R L, Zannin E, Sancini G et al.. Changes in the mechanical properties of the respiratory system during the development of interstitial lung edema.  Respir Res. 2008;  9 51
  • 14 De Jaegere A, van Veenendaal M B, Michiels A, van Kaam A H. Lung recruitment using oxygenation during open lung high-frequency ventilation in preterm infants.  Am J Respir Crit Care Med. 2006;  174 639-645
  • 15 van Kaam A H, de Jaegere A, Haitsma J J, Van Aalderen W M, Kok J H, Lachmann B. Positive pressure ventilation with the open lung concept optimizes gas exchange and reduces ventilator-induced lung injury in newborn piglets.  Pediatr Res. 2003;  53 245-253
  • 16 Lachmann B. Open up the lung and keep the lung open.  Intensive Care Med. 1992;  18 319-321
  • 17 Meredith K S, deLemos R A, Coalson J J et al.. Role of lung injury in the pathogenesis of hyaline membrane disease in premature baboons.  J Appl Physiol. 1989;  66 2150-2158
  • 18 Rimensberger P C, Cox P N, Frndova H, Bryan A C. The open lung during small tidal volume ventilation: concepts of recruitment and “optimal” positive end-expiratory pressure.  Crit Care Med. 1999;  27 1946-1952
  • 19 Rudolph A J, Desmond M M, Pineda R G. Clinical diagnosis of respiratory difficulty in the newborn.  Pediatr Clin North Am. 1966;  13 669-692
  • 20 Mortensson W, Noack G, Curstedt T, Herin P, Robertson B. Radiologic observations in severe neonatal respiratory distress syndrome treated with the isolated phospholipid fraction of natural surfactant.  Acta Radiol. 1987;  28 389-394
  • 21 Niermeyer S, Kattwinkel J, Van Reempts P et al.. International Guidelines for Neonatal Resuscitation: An excerpt from the Guidelines 2000 for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care: International Consensus on Science. Contributors and Reviewers for the Neonatal Resuscitation Guidelines.  Pediatrics. 2000;  106 E29
  • 22 Chow L C, Wright K W, Sola A. CSMC Oxygen Administration Study Group . Can changes in clinical practice decrease the incidence of severe retinopathy of prematurity in very low birth weight infants?.  Pediatrics. 2003;  111 339-345
  • 23 Ehrenkranz R A, Walsh M C, Vohr B R National Institutes of Child Health and Human Development Neonatal Research Network et al. Validation of the National Institutes of Health consensus definition of bronchopulmonary dysplasia.  Pediatrics. 2005;  116 (6) 1353-1360
  • 24 Papile L A, Burstein J, Burstein R, Koffler H. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm.  J Pediatr. 1978;  92 529-534
  • 25 International Committee for the Classification of Retinopathy of Prematurity . The International Classification of Retinopathy of Prematurity revisited.  Arch Ophthalmol. 2005;  123 991-999
  • 26 Lista G, Castoldi F, Fontana P et al.. Lung inflammation in preterm infants with respiratory distress syndrome: effects of ventilation with different tidal volumes.  Pediatr Pulmonol. 2006;  41 (4) 357-363
  • 27 Lista G, Castoldi F, Fontana P et al.. Lung inflammation in preterm infants with respiratory distress syndrome.  Pediatr Pulmonol. 2006;  41 357-363
  • 28 Lista G, Castoldi F, Bianchi S, Battaglioli M, Cavigioli F, Bosoni M A. Volume guarantee versus high-frequency ventilation: lung inflammation in preterm infants.  Arch Dis Child Fetal Neonatal Ed. 2008;  93 F252-F256
  • 29 Valente Barbas C S. Lung recruitment maneuvers in acute respiratory distress syndrome and facilitating resolution.  Crit Care Med. 2003;  31 (4 Suppl) S265-S271
  • 30 Maisch S, Reissmann H, Fuellekrug B et al.. Compliance and dead space fraction indicate an optimal level of positive end-expiratory pressure after recruitment in anesthetized patients.  Anesth Analg. 2008;  106 175-181
  • 31 Hülskamp G, Pillow J J, Dinger J, Stocks J. Lung function tests in neonates and infants with chronic lung disease of infancy: functional residual capacity.  Pediatr Pulmonol. 2006;  41 1-22
  • 32 Nassabeh-Montazami S, Abubakar K M, Keszler M. The impact of instrumental dead-space in volume-targeted ventilation of the extremely low birth weight (ELBW) infant.  Pediatr Pulmonol. 2009;  44 128-133
  • 33 Jobe A H. Lung recruitment for ventilation: does it work, and is it safe?.  J Pediatr. 2009;  154 635-636
  • 34 Krishnan R K, Meyers P A, Worwa C, Goertz R, Schauer G, Mammel M C. Standardized lung recruitment during high frequency and conventional ventilation: similar pathophysiologic and inflammatory responses in an animal model of respiratory distress syndrome.  Intensive Care Med. 2004;  30 1195-1203

Gianluca ListaM.D. 

Neonatal Intensive Care Unit, V. Buzzi Children's Hospital

ICP, Via Castelvetro 32, Milan 20153, Italy

Email: gianluca.lista@icp.mi.it

    >