Subscribe to RSS
DOI: 10.1055/s-0031-1289612
Electroreduction of Triphenylphosphine Oxide to Triphenylphosphine in the Presence of Chlorotrimethylsilane
Publication History
Publication Date:
18 November 2011 (online)

Abstract
Electroreduction of triphenylphosphine oxide to triphenylphosphine in an acetonitrile solution of tetrabutylammonium bromide in the presence of chlorotrimethylsilane was performed successfully in an undivided cell fitted with a zinc anode and a platinum cathode under constant current. A plausible mechanism involving, (1) one-electron reduction of triphenylphosphine oxide generating the corresponding anion radical [Ph3P˙ -O-], (2) subsequent reaction with chlorotrimethylsilane affording the (trimethylsiloxy)triphenylphosphorus radical [Ph3P˙ -OSiMe3], and (3) further one-electron reduction followed by P-O bond fission leading to triphenylphosphine is proposed. In a similar manner, electroreduction of some triarylphosphine oxides and alkyldiarylphosphine oxides was executed to give the corresponding phosphine derivatives in good to moderate yields.
Key words
reduction - electron transfer - phosphorus - silicon
- 1a
Maercker A. In Organic Reactions Vol. 14: John Wiley & Sons; New York: 1965. Chap. 3.Reference Ris Wihthout Link - 1b
Boutagy J.Thomas R. Chem. Rev. 1974, 74: 87Reference Ris Wihthout Link - 2a
Hughes DL. In Organic Reactions Vol. 42: John Wiley & Sons; New York: 1992. Chap. 2.Reference Ris Wihthout Link - 2b
Mitsunobu O.Yamada M. Bull. Chem. Soc. Jpn. 1967, 40: 2380Reference Ris Wihthout Link - 2c
Mukaiyama T.Matsueda R.Maruyama H. Bull. Chem. Soc. Jpn. 1970, 43: 1271Reference Ris Wihthout Link - 3a
Mukaiyama T.Araki M.Takei H. J. Am. Chem. Soc. 1973, 95: 4763Reference Ris Wihthout Link - 3b
Corey EJ.Nicolaou KC. J. Am. Chem. Soc. 1974, 96: 5614Reference Ris Wihthout Link - 3c
Corey EJ.Nicolaou KC.Melvin LS. J. Am. Chem. Soc. 1975, 97: 653Reference Ris Wihthout Link - 3d Modification:
Gerlach H.Thalmann A. Helv. Chim. Acta 1974, 57: 2661Reference Ris Wihthout Link - 4a
Appel R. Angew. Chem., Int. Ed. Engl. 1975, 14: 801Reference Ris Wihthout Link - 4b
Calzada JG.Hooz J. Org. Synth. 1974, 54: 63Reference Ris Wihthout Link - 5a
Staudinger H.Meyer J. Helv. Chim. Acta 1919, 2: 635Reference Ris Wihthout Link - 5b
Gololobov YG.Zhmurova IN.Kasukhin LF. Tetrahedron 1981, 37: 437Reference Ris Wihthout Link - 5c
Scriven EFV.Turnbull K. Chem. Rev. 1988, 88: 297Reference Ris Wihthout Link - 5d
Gololobov YG.Kasukhin LF. Tetrahedron 1992, 48: 1353Reference Ris Wihthout Link - 5e
Shah S.Protasiewicz JD. Coord. Chem. Rev. 2000, 210: 181Reference Ris Wihthout Link - 6 Phosphorus is obtained economically
from limited regions of the world:
Kuroda A.Takiguchi N.Kato J.Ohtake H. J. Environ. Biotech. 2005, 4: 87Reference Ris Wihthout Link - 7 As an another approach, catalytic
Wittig reaction using 3-methyl-1-phenylphospholane 1-oxide
was reported:
O’Brien CJ.Tellez JL.Nixon ZS.Kang LJ.Carter AL.Kunkel SR.Przeworski KC.Chass GA. Angew. Chem. Int. Ed. 2009, 48: 6836Reference Ris Wihthout Link - 8a
Fritzsche H. Chem. Ber. 1965, 98: 171Reference Ris Wihthout Link - 8b
Coumbe T.Lawrence NJ.Muhammad F. Tetrahedron Lett. 1994, 35: 625Reference Ris Wihthout Link - 8c
Marsi FM. J. Org. Chem. 1974, 39: 265Reference Ris Wihthout Link - 9a
Horner L.Hoffmann H.Beck P. Chem. Ber. 1958, 91: 1583Reference Ris Wihthout Link - 9b
Imamoto T.Tanaka T.Kusumoto T. Chem. Lett. 1985, 14: 1491Reference Ris Wihthout Link - 9c
Griffin S.Heath L.Wyatt P. Tetrahedron Lett. 1998, 39: 4405Reference Ris Wihthout Link - 9d
Nelson GE. inventors; US 4,507,502. ; Chem. Abstr. 1985, 103, 37617Reference Ris Wihthout Link - 9e
Busacca CA.Raju R.Grinberg N.Haddad N.James-Jones P.Lee H.Lorenz JC.Saha A.Senanayake CH. J. Org. Chem. 2008, 73: 1524Reference Ris Wihthout Link - 9f
Malpass DB, andYeargin GS. inventors; US 4,113,783. ; Chem. Abstr. 1979, 90, 23256Reference Ris Wihthout Link - 10
Handa Y.Inanaga J.Yamaguchi M. J. Chem. Soc., Chem. Commun. 1989, 298Reference Ris Wihthout Link - 11
Mathey F.Maillet R. Tetrahedron Lett. 1980, 21: 2525Reference Ris Wihthout Link - 12
Dockner T. Angew. Chem. 1988, 100: 699Reference Ris Wihthout Link - 13
Timokhin BV.Kazantseva MV.Blazhev DG.Rokhin AV. Russ. J. Gen. Chem. 2000, 70: 1310 ; Chem. Abstr. 2001, 134, 311265Reference Ris Wihthout Link - 14a
Iorga B.Camichael D.Savignac P. C. R. Acad. Sci., Ser. IIC 2000, 3: 821Reference Ris Wihthout Link - 14b
Hermeling D,Hugo R,Lechtken P,Rotermund GW, andSiegel H. inventors; DE 19,532,310. ; Chem. Abstr. 1997, 126, 199670Reference Ris Wihthout Link - 14c
Masaki M.Fukui K. Chem. Lett. 1977, 6: 151Reference Ris Wihthout Link - Triphenylphosphorus dichloride (3a) is also prepared by treatment of 2 with chlorinating reagents such as diphosgene, triphosgene, and phosphorus pentachloride.
- 15a
Rao VJ, andReddy AM. inventors; IN 1996-DE1812. ; Chem. Abstr. 2007, 146, 402090Reference Ris Wihthout Link - 15b
Li H,Chen Z,Wu L,Wang C, andHu B. inventors; CN 1,660,862. ; Chem. Abstr. 2006, 144, 488805Reference Ris Wihthout Link - 15c
Horner L.Hoffmann H.Beck P. Chem. Ber. 1958, 91: 1583Reference Ris Wihthout Link - 16 Theoretical calculation:
Mo O.Eckert-Maksic YM.Maksic ZB.Alkorta I.Elguero J. J. Phys. Chem. A. 2005, 109: 4359Reference Ris Wihthout Link - 17
Masaki M, andKaketani N. inventors; JP 53-034,725. ; Chem. Abstr. 1978, 89, 109953Reference Ris Wihthout Link - 18
Fukui K,Kaketani N,Kita J, andFujimura S. inventors; JP 55-149,293. ; Chem. Abstr. 1981, 94, 175259Reference Ris Wihthout Link - 19
Horner L.Beck P.Hoffmann H. Chem. Ber. 1959, 92: 2088Reference Ris Wihthout Link - 20
Hermeling D,Siegel H,Hugo R, andRotermund GW. inventors; EP 725,073. ; Chem. Abstr. 1996, 125, 195993Reference Ris Wihthout Link - 21
Wettling T. inventors; EP 5,48,682. ; Chem. Abstr. 1993, 119, 139547Reference Ris Wihthout Link - 22
Young DA, andBrannock KC. inventors; US 3,780,111. ; Chem. Abstr. 1974, 80, 60039Reference Ris Wihthout Link - 23a
Organic Electrochemistry
4th
ed.:
Lund H.Hammerich O. Marcel Dekker; New York: 1991.Reference Ris Wihthout Link - 23b
Torii S. In Electroorganic Reduction Synthesis Kodansha & Wiley-VCH; Tokyo/Weinheim: 2006.Reference Ris Wihthout Link - 23c
New Developments
in Organic Electrosynthesis
Fuchigami T. CMC; Tokyo: 2004.Reference Ris Wihthout Link - 23d
Electroorganic
Chemistry, Kagaku Zokan
Vol. 86:
Osa T.Shono T.Honda K. Kagaku Dojin; Kyoto: 1980.Reference Ris Wihthout Link - 24a
Santhanam KSV.Bard AJ. J. Am. Chem. Soc. 1968, 90: 1118Reference Ris Wihthout Link - 24b
Raju T,Kulangiappar K,Kulandainathan MA,Muthukumaran A, andKrishnan V. inventors; IN 2002-DE793. ; Chem. Abstr. 2007, 147, 235305Reference Ris Wihthout Link - 25
CRC
Handbook of Chemistry & Physics
74th ed.:
Lide DR. CRC Press; London: 1993.Reference Ris Wihthout Link - 27
Yano T.Hoshino M.Kuroboshi M.Tanaka H. Synlett 2010, 801Reference Ris Wihthout Link - 28
Yano T.Kuroboshi M.Tanaka H. Tetrahedron Lett. 2010, 51: 698Reference Ris Wihthout Link - 29
Kuroboshi M.Yano T.Kamenoue S.Kawakubo H.Tanaka H. Tetrahedron 2011, 67: 5825Reference Ris Wihthout Link - 30
Tanaka H.Yano T.Kobayashi K.Kamenoue S.Kuroboshi M.Kawakubo H. Synlett 2011, 582Reference Ris Wihthout Link
References
Since 3a is highly moisture sensitive, 3a was used without purification.
31Among thus far examined solvents, MeCN was the only solvent effective for the present purpose; thus, electro-reduction of 2a to 1a hardly occurred in THF, DMSO, DMF, and 1,4-dioxane. The electroreduction proceeded in a mixture of THF and MeCN (4:1 to 1:4).
32As a supporting electrolyte, Bu4NOTf, Bu4NBF4, and Bu4NClO4 could be used to give 1a in slightly lower yields (42, 38, and 52%, respectively). The electroreduction of 2a proceeded without supporting electrolyte to give 1a in 41% yield.
33One singlet signal appeared at δ = 32.5 ppm in the ³¹P NMR of a mixture of 2a, Me3SiCl, and Bu4NBr. On the other hand, a mixture of 2a and Me3SiBr showed a singlet peak at δ = 48.7 ppm. These results suggest that Me3SiCl would react partially with Bu4NBr to give Me3SiBr, which would inter-act with 1a to form a trace amount of [Ph3P+-O-SiMe3]Br-. However, since the electroreduction of Ph3P=O (2a) proceeded without Br- source (ref. 32), the electroreduction of 2a seems to proceed mainly through the ECEC mechanism (Scheme [6] ).