Abstract
Conversion of 1,1,2-trichloro-2-nitroethene with an excess of
1H -benzotriazole, followed by transamination
of the resulting 1,1-bis(benzotriazol-1-yl)-2-chloro-2-nitroethene
with different aniline derivatives provides the corresponding 1-(arylimino)-1-(benzotriazolyl)ethanes.
Upon cycloaddition with sodium azide, these amidines enable the
formation of hitherto unknown 1-aryltetrazoles bearing a chloro(nitro)methyl
group in the 5-position. The structure of a 4-fluorophenyl derivative
was proven by single-crystal X-ray diffraction analysis. Starting
from arenediamines, this reaction affords bistetrazoles. In addition,
the tetrazoles are interesting starting materials for further conversions
of the side chain.
Key words
nitro compounds - nucleophilic substitution - amidines - arenes - heterocycles - tetrazoles
References
<A NAME="RT110211SS-1A">1a </A>
Kaberdin RV.
Potkin VI.
Zapol’skii VA.
Russ. Chem.
Rev.
1997,
66:
827
<A NAME="RT110211SS-1B">1b </A>
Potkin VI.
Zapol’skii VA.
Knizhnikov VA.
Kaberdin RV.
Yanuchok AA.
Petkevich SK.
Russ. J. Org. Chem.
2001,
37:
689
<A NAME="RT110211SS-2A">2a </A>
Zapol’skii VA.
Namyslo JC.
Adam AEW.
Kaufmann DE.
Heterocycles
2004,
1281
<A NAME="RT110211SS-2B">2b </A>
Zapol’skii VA.
Namyslo JC.
Blaschkowski B.
Kaufmann DE.
Synlett
2006,
3464
<A NAME="RT110211SS-2C">2c </A>
Zapol’skii VA.
Namyslo JC.
Gjikaj M.
Kaufmann DE.
ARKIVOC
2007,
(i):
76
<A NAME="RT110211SS-2D">2d </A>
Zapol’skii VA.
Namyslo JC.
Gjikaj M.
Kaufmann DE.
Synlett
2007,
1507
<A NAME="RT110211SS-2E">2e </A>
Zapol’skii VA.
Namyslo JC.
Altug C.
Gjikaj M.
Kaufmann DE.
Synthesis
2008,
304
<A NAME="RT110211SS-2F">2f </A>
Meyer C.
Zapol’skii VA.
Adam AEW.
Kaufmann DE.
Synthesis
2008,
2575
<A NAME="RT110211SS-2G">2g </A>
Nutz E.
Zapol’skii VA.
Kaufmann DE.
Synthesis
2009,
2719
<A NAME="RT110211SS-2H">2h </A>
Zapol’skii VA.
Fischer R.
Namyslo JC.
Kaufmann DE.
Bioorg.
Med. Chem.
2009,
17:
4206
<A NAME="RT110211SS-2I">2i </A>
Zapol’skii VA.
Namyslo JC.
Gjikaj M.
Kaufmann DE.
Z.
Naturforsch.
2010,
843
<A NAME="RT110211SS-3">3 </A>
Scribner RM.
J.
Org. Chem.
1965,
30:
3657
<A NAME="RT110211SS-4A">4a </A>
Katritzky AR.
Belyakov SA.
Aldrichimica Acta
1998,
35
<A NAME="RT110211SS-4B">4b </A>
Katritzky AR.
Lan X.
Yang JZ.
Denisko OV.
Chem.
Rev.
1998,
98:
409
<A NAME="RT110211SS-4C">4c </A>
Katritzky AR.
Abdel-Fattah AAA.
Gromova AV.
Witek R.
Steel PJ.
J. Org. Chem.
2005,
70:
9211
<A NAME="RT110211SS-4D">4d </A>
Katritzky AR.
Cai C.
Suzuki K.
Singh SK.
J. Org. Chem.
2004,
69:
811
<A NAME="RT110211SS-5">5 </A>
Clark NG.
Hams AF.
Leggetter BE.
Nature
1963,
200:
171
<A NAME="RT110211SS-6A">6a </A>
Alvarez SG.
Alvarez MT.
Synthesis
1997,
413
<A NAME="RT110211SS-6B">6b </A>
Gunn SJ.
Baker A.
Bertram RD.
Warriner SL.
Synlett
2007,
2643
<A NAME="RT110211SS-7">7 </A>
X-ray crystal structure analysis for
C8 H5 ClFN5 O2 , M = 257.62
g mol-¹ : A suitable single crystal
of the title compound was selected under a polarization microscope
and mounted in a glass capillary (d = 0.3
mm). The crystal structure was determined by X-ray diffraction analysis
using graphite monochromated MoKα radiation (0.71073 Å) [T = 223(2)
K], whereas the scattering intensities were collected with
a single crystal diffractometer (STOE IPDS II). The crystal structure
was solved by Direct Methods using SHELXS-978 and refined
using alternating cycles of least squares refinements against F
² (SHELXL-978 ).
All non-H atoms were located in Difference Fourier maps and were
refined with anisotropic displacement parameters. The H positions
were determined by a final Difference Fourier Synthesis. C8 H5 ClFN5 O2 crystallized
in the orthorhombic space group Pna 21 (No.
33), lattice parameters a = 13.458(4) Å, b = 6.058(2) Å, c = 25.281(9) Å, β = 103.88(3)˚, V = 2061.1(1) ų , Z = 8, d
calc = 1.660
g cm-³ , F (000) = 1040 using
3597 independent reflections and 348 parameters. R 1 = 0.0605, wR 2 = 0.1023 [I > 2σ(I )], goodness of fit on F 2 = 1.085,
residual electron density = 0.672 and -0.424 e Å-³ .
Further details of the crystal structure investigations have been
deposited with the Cambridge Crystallographic Data Center, CCDC
826045. Copies of this information may be obtained free of charge
from The Director, CCDC, 12 Union Road, Cambridge, CB2
1EZ, UK [Fax: +44 (1223)336 033; e-mail:
fileserv@ccdc.ac.uk or http://www.ccdc.cam.ac.uk].
<A NAME="RT110211SS-8">8 </A>
Sheldrick GM.
SHELXS
97 and SHELXL 97, Program for the Solution and Refinement of Crystal
Structures
University of Göttingen;
Germany:
1997.
<A NAME="RT110211SS-9">9 </A>
El Kaim L.
Grimaud L.
Patil P.
Org.
Lett.
2011,
13:
1261
<A NAME="RT110211SS-10">10 </A>
Koldobskii GI.
Russ.
J. Org. Chem.
2006,
42:
469
<A NAME="RT110211SS-11A">11a </A>
Schuren FHJ,
Thijssen HMWM, and
Montijn RC. inventors; EP 1,769,796.
<A NAME="RT110211SS-11B">11b </A>
Caldwell CG,
Chiang Y,
Dorn C,
Finke P,
Hale J,
Maccoss M,
Mills S, and
Robichaud A. inventors; US 5,877,191.
<A NAME="RT110211SS-11C">11c </A>
Chen L,
Dillon MP,
Feng L,
Hawley RC, and
Yang M. inventors; WO 2009,077,371.
<A NAME="RT110211SS-11D">11d </A>
Denhart DJ,
Degnan AP,
Tora GO,
Han Y,
Ramkumar R,
Ditta JL, and
Gillman KW. inventors; WO 2007,121,389.
<A NAME="RT110211SS-12">12 </A>
Su W.
Eur.
J. Org. Chem.
2006,
12:
2723
<A NAME="RT110211SS-13">13 </A>
Kundu D.
Majee A.
Hajra A.
Tetrahedron
Lett.
2009,
50:
2668
<A NAME="RT110211SS-14A">14a </A>
Mueller B,
Sauter H,
Wingert H,
Koenig H,
Roehl F,
Ammermann E, and
Lorenz G. inventors; EP 579,071.
<A NAME="RT110211SS-14B">14b </A>
Neunhoeffer H.
Metz H.-J.
Liebigs Ann. Chem.
1983,
1476
<A NAME="RT110211SS-14C">14c </A>
Boehm H.-J,
Seitz W,
Hornberger W,
Hoeffken HW,
Pfeiffer T,
Koser S, and
Mack H. inventors; US 6,455,671.
<A NAME="RT110211SS-15">15 </A>
Dighe SN.
Jain KS.
Srinivasan KV.
Tetrahedron Lett.
2009,
50:
6139