Abstract
9-Boc-6-chloropurine, which can be obtained in high yield, is
nearly quantitatively reduced with the THF˙BH3 complex. The
obtained 9-Boc-7,8-dihydropurine derivative is more stable compared
to the corresponding 9-tritylpurine and can be smoothly N7 -alkylated,
acylated, or it can serve as an N-nucleophile in conjugate additions.
Deprotection with trifluoroacetic acid followed by MnO2 oxidation
affords the N7 -substituted purines in high yields. The
whole sequence of alkylation, deprotection, and oxidation can be
done with crude intermediates using chromatography only for the
purification of the final N7 -substituted purine.
Key words
alkylation - acylation - Michael addition - nucleobases - reduction
References
For a recent review of biologically
active purines, see:
<A NAME="RZ101411SS-1A">1a </A>
Rosemeyer H.
Chem.
Biodiversity
2004,
361
<A NAME="RZ101411SS-1B">1b </A>
Legraverend M.
Grierson DS.
Bioorg. Med. Chem.
2006,
14:
3987
<A NAME="RZ101411SS-2">2 </A> For a recent review on the synthesis
of purine derivatives, see:
Legraverend M.
Tetrahedron
2008,
64:
8585
<A NAME="RZ101411SS-3A">3a </A>
Duke CC.
Liepa AJ.
MacLeod JK.
Letham DS.
Parker CW.
J.
Chem. Soc., Chem. Commun.
1975,
964 ; and
references cited therein
<A NAME="RZ101411SS-3B">3b </A>
Jähne G.
Kroha H.
Müller A.
Helsberg M.
Winkler I.
Gross G.
Scholl T.
Angew.
Chem., Int. Ed. Engl.
1994,
33:
562
<A NAME="RZ101411SS-3C">3c </A>
Yosief T.
Rudi A.
Stein Z.
Goldberg I.
Gravalos GMD.
Schleyer M.
Kashman Y.
Tetrahedron
Lett.
1998,
39:
3323
<A NAME="RZ101411SS-3D">3d </A>
Rudi A.
Shalom H.
Schleyer M.
Benayahu Y.
Kashman Y.
J.
Nat. Prod.
2004,
67:
106
<A NAME="RZ101411SS-3E">3e </A>
Rudi A.
Aknin M.
Gaydou E.
Kashman Y.
J. Nat. Prod.
2004,
67:
1932
<A NAME="RZ101411SS-3F">3f </A>
Yosief T.
Rudi A.
Kashman Y.
J.
Nat. Prod.
2000,
63:
299
<A NAME="RZ101411SS-3G">3g </A>
Jemielity J.
Kowalska J.
Rydzik AM.
Darzynkiewicz E.
New J. Chem.
2010,
34:
829 ; and references cited therein
<A NAME="RZ101411SS-4A">4a </A>
Leonard NJ.
Fujii T.
Saito T.
Chem. Pharm. Bull.
1986,
34:
2037
<A NAME="RZ101411SS-4B">4b </A>
Fujii T.
Saito T.
Inoue I.
Kumazawa Y.
Leonard NJ.
Chem.
Pharm. Bull.
1986,
34:
1821
<A NAME="RZ101411SS-4C">4c </A>
Garner P.
Ramakanth S.
J. Org. Chem.
1988,
53:
1294
<A NAME="RZ101411SS-4D">4d </A>
Hocková D.
Buděčínský M.
Marek R.
Marek J.
Hol A.
Eur. J. Org. Chem.
1999,
2675
<A NAME="RZ101411SS-5">5 </A>
Montgomery JA.
Hewson K.
J. Org. Chem.
1961,
26:
4469
<A NAME="RZ101411SS-6">6 </A>
Ibrahim N.
Legraverend M.
J. Org. Chem.
2009,
74:
463
<A NAME="RZ101411SS-7">7 </A>
Dalby C.
Bleasdale C.
Clegg W.
Elsegood MRJ.
Golding BT.
Griffin RJ.
Angew.
Chem., Int. Ed. Engl.
1993,
32:
1696
<A NAME="RZ101411SS-8">8 </A>
Pappo D.
Shimony S.
Kashman Y.
J.
Org. Chem.
2005,
70:
199
<A NAME="RZ101411SS-9">9 </A>
Keder R.
Dvořáková H.
Dvořák D.
Eur. J. Org. Chem.
2009,
1522
<A NAME="RZ101411SS-10A">10a </A>
Havelková M.
Dvořák D.
Hocek M.
Synthesis
2001,
1704
<A NAME="RZ101411SS-10B">10b </A>
Tobrman T.
Dvořák D.
Org. Lett.
2003,
5:
4289
<A NAME="RZ101411SS-10C">10c </A>
Tobrman T.
Dvořák D.
Org. Lett.
2006,
8:
1291
<A NAME="RZ101411SS-10D">10d </A>
Tobrman T.
Dvořák D.
Eur. J. Org.
Chem.
2008,
2923
<A NAME="RZ101411SS-11">11 </A>
Kotek V.
Chudíková N.
Tobrman T.
Dvořák D.
Org. Lett.
2010,
12:
5724
<A NAME="RZ101411SS-12A">12a </A>
Albert A.
J. Chem. Soc., Perkin Trans.
1
1981,
2974
<A NAME="RZ101411SS-12B">12b </A>
Kelly JL.
Linn JA.
J.
Org. Chem.
1986,
51:
5435
<A NAME="RZ101411SS-12C">12c </A>
Pendergast W.
Hall WR.
J. Heterocycl. Chem.
1989,
26:
1863
<A NAME="RZ101411SS-13">13 </A>
Rodenko B.
Koch M.
van der Burg AM.
Wanner MJ.
Koomen G.-J.
J. Am. Chem. Soc.
2005,
127:
5957
<A NAME="RZ101411SS-14">14 </A>
However, the use of the 6-iodo-7,8-dihydropurines
appeared to be crucial for the Heck reaction, which is under study
in our laboratory at present.
<A NAME="RZ101411SS-15">15 </A>
The use of the DBU as the base was
less effective compared to the LiHMDS. Thus, alkylation of 2a with benzyl bromide in DMF in the presence
of DBU gave 100% conversion and 60% yield of 3c , while in MeCN full conversion was not achieved.
<A NAME="RZ101411SS-16A">16a </A> This
formal dehydrohalogenation of 6-chloro-7,8-dihydropurines under
basic conditions has already been described, however, without a
mechanistic explanation:
Kelley JL.
Linn JA.
J. Org. Chem.
1986,
51:
5435
<A NAME="RZ101411SS-16B">16b </A>
We believe that the
deprotonated 2a can serve as the source
of hydride (similar to NADH), which inter-molecularly reduces the
halogen.
<A NAME="RZ101411SS-17">17 </A>
Koch SS.
Chamberlin AR.
J. Org. Chem.
1993,
58:
2725
<A NAME="RZ101411SS-18">18 </A>
Edwards MP.
Ley SV.
Lister SG.
Palmer BD.
Williams DJ.
J. Org. Chem.
1984,
49:
3503
<A NAME="RZ101411SS-19">19 </A>
Prasad RN.
Robins RK.
J. Am. Chem. Soc.
1957,
79:
6401
<A NAME="RZ101411SS-20">20 </A>
Okamura T.
Kikuchi T.
Fukushi K.
Arano Y.
Irie T.
Bioorg.
Med. Chem.
2007,
15:
3127
<A NAME="RZ101411SS-21">21 </A>
Gundersen L.-L.
Bakkestuen AK.
Aasen AJ.
Øverås H.
Rise F.
Tetrahedron
1994,
50:
9743
<A NAME="RZ101411SS-22">22 </A>
Platzer N.
Galons H.
Bensaid Y.
Miocque M.
Bram G.
Tetrahedron
1987,
43:
2101