Synthesis 2012; 44(24): 3815-3821
DOI: 10.1055/s-0032-1317526
paper
© Georg Thieme Verlag Stuttgart · New York

[RuH2(PPh3)4]-Catalyzed Michael Addition Reaction of α-Fluoronitroalkanes

Qi Wang
a   Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. of China   Fax: +86(21)64253074   eMail: yxj@ecust.edu.cn
,
Qing-Yun Chen
b   Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China   Fax: +86(21)64166128   eMail: yguo@sioc.ac.cn
,
Xianjin Yang*
a   Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. of China   Fax: +86(21)64253074   eMail: yxj@ecust.edu.cn
,
Yong Guo*
b   Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China   Fax: +86(21)64166128   eMail: yguo@sioc.ac.cn
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 03. September 2012

Accepted after revision: 14. Oktober 2012

Publikationsdatum:
09. November 2012 (online)


Abstract

The Michael addition reactions of α-fluoronitroalkanes with various electron-deficient olefins were realized by catalysis of low-valence ruthenium species through Csp3-H activation, providing a useful way to construct a fluorinated quaternary carbon center. The reactions were carried out under neutral conditions, affording the desired products in moderate to excellent yields.

Supporting Information

 
  • References

    • 1a Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 1b O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
    • 1c Thayer AM. Chem. Eng. News 2006; 84 (23): 15
    • 1d O’Hagan D. J. Fluorine Chem. 2010; 131: 1071
    • 1e Ojima I. Fluorine in Medicinal Chemistry and Chemical Biology. Wiley; Chichester: 2009
    • 1f Bégué J.-P, Bonnet-Delphon D. Bioorganic and Medicinal Chemistry of Fluorine . Wiley; Hoboken: 2008
    • 1g Uneyama K. Organofluorine Chemistry . Blackwell; Oxford: 2006
    • 1h Kirsch P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications. Wiley-VCH; Weinheim: 2004
    • 1i Chambers RD. Fluorine in Organic Chemistry . Blackwell; Oxford: 2004
    • 1j Hiyama T. Organofluorine Compounds: Chemistry and Applications. Springer; New York: 2000
    • 1k Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 2a Guo C, Wang R.-W, Guo Y, Qing F.-L. J. Fluorine Chem. 2012; 133: 86
    • 2b Wang W, Chen Q.-Y, Guo Y. Synlett 2011; 2705 ; and references therein
    • 2c Davis FA, Kasu PV. N. Org. Prep. Proced. Int. 1999; 31: 125
    • 2d Cahard D, Xu X, Couve-Bonnaire S, Pannecoucke X. Chem. Soc. Rev. 2010; 39: 558
    • 2e Lectard S, Hamashima Y, Sodeoka M. Adv. Synth. Catal. 2010; 352: 2708
    • 2f Ma J.-A, Cahard D. Chem. Rev. 2008; 108: PR1
    • 2g Brunet VA, O’Hagan D. Angew. Chem. Int. Ed. 2008; 47: 1179
    • 2h Shibata N, Ishimaru T, Nakamura S, Toru T. J. Fluorine Chem. 2007; 128: 469
    • 2i Prakash GK. S, Beier P. Angew. Chem. Int. Ed. 2006; 45: 2172
    • 2j Pihko PM. Angew. Chem. Int. Ed. 2006; 45: 544
    • 2k Bobbio C, Gouverneur V. Org. Biomol. Chem. 2006; 4: 2065
    • 2l Hamashima Y, Sodeoka M. Synlett 2006; 1467
    • 2m Mikami K, Itoh Y, Yamanaka M. Chem. Rev. 2004; 104: 1
    • 2n Smith AM. R, Hii KK. Chem. Rev. 2011; 111: 1637
    • 2o Shibatomi K. Synthesis 2010; 2679
    • 2p Bella M, Gasperi T. Synthesis 2009; 1583
    • 2q Ueda M, Kano T, Maruoka K. Org. Biomol. Chem. 2009; 7: 2005
    • 2r Cozzi PG, Hilgraf R, Zimmermann N. Eur. J. Org. Chem. 2007; 5969
    • 2s Marigo M, Jørgensen KA. Chem. Commun. 2006; 2001
    • 2t Oestreich M. Angew. Chem. Int. Ed. 2005; 44: 2324
    • 2u France S, Weatherwax A, Lectka T. Eur. J. Org. Chem. 2005; 475
    • 2v Ibrahim H, Togni A. Chem. Commun. 2004; 1147
    • 2w Zhao Y, Pan Y, Sima S.-BD, Tan C.-H. Org. Biomol. Chem. 2012; 10: 479
    • 3a Butler P, Golding BT, Laval G, Loghmani-Khouzani H, Ranjbar-Karimi R, Sadeghi MM. Tetrahedron 2007; 63: 11160
    • 3b Sadeghi MM, Loghmani-Khouzani H, Ranjbar-Karimi R, Golding BT. Tetrahedron Lett. 2006; 47: 2455
    • 3c Chambers RD, Hutchinson J. J. Fluorine Chem. 1998; 92: 45
    • 3d Wang CM, Mallouk TE. J. Am. Chem. Soc. 1990; 112: 2016
    • 3e Barnette WE. J. Am. Chem. Soc. 1984; 106: 452
    • 3f Freeman JP. J. Am. Chem. Soc. 1960; 82: 3869
    • 3g Rozen S, Bar-Haim S, Mishani E. J. Org. Chem. 1994; 59: 6800
    • 3h Lorand J, Ubran J, Overs J, Ahmed QA. J. Org. Chem. 1969; 34: 4176
    • 3i Adolph HG, Oesterling RE, Sitzmann ME. J. Org. Chem. 1968; 33: 4296
    • 4a Cui H.-F, Li P, Wang X.-W, Chai Z, Yang Y.-Q, Cai Y.-P, Zhu S.-Z, Zhao G. Tetrahedron 2011; 67: 312
    • 4b Wang X.-W, Cui H.-F, Wang H.-F, Yang Y.-Q, Zhao G, Zhu S.-Z. Tetrahedron 2011; 67: 2468
    • 4c Takeuchi Y, Nagata K, Koizumi T. J. Org. Chem. 1987; 52: 5061
    • 4d Takeuchi Y, Nagata K, Koizumi T. J. Org. Chem. 1989; 54: 5453
    • 4e Takeuchi Y, Kanada A, Kawahara S, Koizumi T. J. Org. Chem. 1993; 58: 3483
    • 4f Hu H, Huang Y, Guo Y. J. Fluorine Chem. 2012; 133: 108
    • 4g Huan F, Hu H, Huang Y, Chen Q, Guo Y. Chin. J. Chem. 2012; 30: 798
    • 4h Ullah F, Zhao G.-L, Deiana L, Zhu M, Dziedzic P, Ibrahem I, Hammar P, Sun J, Córdova A. Chem.–Eur. J. 2009; 15: 10013
    • 4i Pan Y, Zhao Y, Ma T, Yang Y, Liu H, Jiang Z, Tan C.-H. Chem.–Eur. J. 2010; 16: 779
    • 4j Kamlar M, Bravo N, Alba A.-NR, Hybelbauerová S, Císařová I, Veselý J, Moyano A, Rios R. Eur. J. Org. Chem. 2010; 5464
    • 4k Prakash GK. S, Chacko S, Alconcel S, Stewart T, Mathew T, Olah GA. Angew. Chem. Int. Ed. 2007; 46: 4933
    • 5a Zhang W, Ni C, Hu J. Top. Curr. Chem. 2012; 308: 25
    • 5b Prakash GK. S, Hu J. Acc. Chem. Res. 2007; 40: 921
    • 6a Murahashi S.-I, Takaya H. Acc. Chem. Res. 2000; 33: 225
    • 6b Trost BM, Toste FD, Pinkerton AB. Chem. Rev. 2001; 101: 2067
    • 6c Naota T, Takaya H, Murahashi S.-I. Chem. Rev. 1998; 98: 2599
    • 6d Naota T, Taki H, Mizuno M, Murahashi S.-I. J. Am. Chem. Soc. 1989; 111: 5954
    • 6e Murahashi S.-I, Naota T, Taki H, Mizuno M, Takaya H, Komiya S, Mizuho Y, Oyasato N, Hiraoka M, Hirano M, Fukuoka A. J. Am. Chem. Soc. 1995; 117: 12436
    • 6f Komiya S, Mizuho Y, Kasuga N. Chem. Lett. 1991; 2127
    • 6g Paganelli S, Schionato A, Botteghi C. Tetrahedron Lett. 1991; 32: 2807
  • 7 Kunetsky RA, Dilman AD, Struchkova MI, Belyakov PA, Tartakovsky VA, Ioffe SL. Synthesis 2006; 2265
  • 8 Grenning AJ, Tunge JA. Org. Lett. 2010; 12: 740
    • 9a Ballini R, Bosica G, Fiorini D, Palmieri A, Petrini M. Chem. Rev. 2005; 105: 933
    • 9b Ono N. The Nitro Group in Organic Synthesis . Wiley-VCH; Weinheim: 2001
  • 10 Peng W, Shreeve JM. Tetrahedron Lett. 2005; 46: 4905