Planta Med 2013; 79(03/04): 236-243
DOI: 10.1055/s-0032-1328189
Biological and Pharmacological Activity
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Lupenone from Erica multiflora Leaf Extract Stimulates Melanogenesis in B16 Murine Melanoma Cells through the Inhibition of ERK1/2 Activation

Myra O. Villareal
1   Alliance for Research on North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki, Japan
,
Junkyu Han
1   Alliance for Research on North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki, Japan
2   Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
,
Kyoko Matsuyama
2   Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
,
Yukiko Sekii
2   Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
,
Abderrazek Smaoui
3   Technopole de Borj-Cedria-Centre de Biotechnologie, Hammam-Lif, Tunisia
,
Hideyuki Shigemori
2   Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
,
Hiroko Isoda
1   Alliance for Research on North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki, Japan
2   Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
› Author Affiliations
Further Information

Publication History

received 14 October 2012
revised 28 November 2012

accepted 27 December 2012

Publication Date:
13 February 2013 (online)

Abstract

Hypopigmentation diseases are usually managed using UVB light which increases the patientsʼ risk for skin cancer. Here, we evaluated the melanogenesis stimulatory effects of leaf extracts of Erica multiflora, a medicinal plant from the Mediterranean region, and its active component, lup-20(29)-en-3-one, as possible therapeutic agents to address hypopigmentation disorders. B16 murine melanoma cells were treated with E. multiflora extracts or its active component lupenone to evaluate their effects on melanin biosynthesis. The mechanism underlying the observed effects was also determined. Bioactivity-guided fractionation of fifteen ethyl acetate fractions identified fraction 2 to have melanogenesis stimulatory effects due to its ability to decrease mitogen-activated protein kinase phosphorylated extracellular signal-regulated kinases 1 and 2 activation. Preparative TLC of ethyl acetate fraction 2 revealed the presence of lup-20(29)-en-3-one as the major bioactive component. B16 cells treated with lup-20(29)-en-3-one increased melanin content without cytotoxicity. To determine the mechanism for the observed effects of lup-20(29)-en-3-one, the tyrosinase enzyme activity, the tyrosinase protein expression, and the activation of phosphorylated extracellular signal-regulated kinases 1 and 2 were determined. In addition, the expression of the tyrosinase mRNA was quantified using real-time PCR. Results showed that lup-20(29)-en-3-one has no effect on the tyrosinase enzyme activity but can increase tyrosinase expression at both the transcriptional and translational levels. The increase in the tyrosinase mRNA expression was most likely due to the inhibited mitogen-activated protein kinase phosphorylated extracellular signal-regulated kinases 1 and 2 activation. We report for the first time that E. multiflora ethyl acetate extract and its active compound lup-20(29)-en-3-one stimulate melanogenesis by increasing the tyrosinase enzyme expression via mitogen-activated protein kinase phosphorylated extracellular signal-regulated kinases 1 and 2 phosphorylation inhibition, making it a possible treatment for hypopigmentation diseases.

 
  • References

  • 1 Brenner M, Hearing VJ. The protective role of melanin against UV damage in human skin. Photochem Photobiol 2008; 84: 539-549
  • 2 Ahene AB, Saxena S, Nacht S. Photoprotection of solubilized and microdispersed melanin particles. In: Zeise L, Chedekel M, Fitzpatrick TB, editors Melanin, its role in human photoprotection. Overland Park, KS: Valendmar; 1995: 255-269
  • 3 Hearing VJ, Korner AM, Pawelek JM. New regulators of melanogenesis are associated with purified tyrosinase isozymes. J Invest Dermatol 1982; 79: 16-18
  • 4 Kobayashi T, Urabe K, Winder A, Jimenez-Cervantes C, Imokawa G, Brewington T, Solano F, Garcia-Borron JC, Hearing VJ. Tyrosinase related protein 1 (TRP1) functions as a DHICA oxidase in melanin biosynthesis. EMBO J 1994; 13: 5818-5825
  • 5 Tsukamoto K, Jackson IJ, Urabe K, Montague PM, Hearing VJ. A second tyrosinase-related protein, TRP-2, is a melanogenic enzyme termed DOPAchrome tautomerase. EMBO J 1992; 11: 519-526
  • 6 Ruiz-Maldonado R, Orozco-Covarrubias ML. Postinflammatory hypopigmentation and hyperpigmentation. Semin Cutan Med Surg 1997; 16: 36-43
  • 7 Harvey AR. The issue of skin color in psychotherapy with African Americans. Fam Soc 1995; 76: 3-10
  • 8 Relyveld GN, Menke HE, Westerhof W. Progressive macular hypomelanosis: an overview. Am J Clin Dermatol 2007; 8: 13-19
  • 9 Neynaber S, Kirschner C, Kamann S, Plewig G, Flaig MJ. Progressive macular hypomelanosis: a rarely diagnosed hypopigmentation in Caucasians. Dermatol Res Pract 2009; DOI: 10.1155/2009/607682.
  • 10 Goldberg DJ, Marmur ES, Schmults C, Hussain M, Phelps R. Histologic and ultrastructural analysis of ultraviolet B laser and light source treatment of leukoderma in striae distensae. Dermatol Surg 2005; 31: 385-387
  • 11 Montero LC, Belinchón I, Toledo F, Betlloch I. Progressive macular hypomelanosis, excellent response with narrow-band ultraviolet B phototherapy. Photodermatol Photoimmunol Photomed 2011; 27: 162-163
  • 12 Kunisada M, Yogianti F, Sakumi K, Ono R, Nakabeppu Y, Nishigori C. Increased expression of versican in the inflammatory response to UVB- and reactive oxygen species-induced skin tumorigenesis. Am J Pathol 2011; 179: 3056-3065
  • 13 González Maglio DH, Paz ML, Ferrari A, Weill F S, Nieto J, Leoni J. Alterations in skin immune response throughout chronic UVB irradiation – skin cancer development and prevention by Naproxen. Photochem Photobiol 2010; 86: 146-152
  • 14 Brash DE, Rudolph JA, Simon JA, Lin A, Mckenna GJ, Badent HP, Halperin AJ, Pontin J. A role for sunlight in skin cancer: UV-induced p 53 mutations in squamous cell carcinoma. Proc Nat Acad Sci USA 1991; 88: 10124-10128
  • 15 Oliver EGH. The Ericoideae (Ericaceae) – a review. Contr Bolus Herb 1991; 13: 158-208
  • 16 Aubert G. Relations entre le sol et cinq espécies dʼericacées dans le Sud-est de la France. Oecol Plant 1978; 13: 253-269
  • 17 Sadki C, Hacht B, Souliman A, Atmani F. Acute diuretic activity of aqueous Erica multiflora flowers and Cynodon dactylon rhizomes extracts in rats. J Ethnopharmacol 2010; 128: 352-356
  • 18 Harnafi H, El Houda Bouanani N, Aziz M, Caid HS, Ghalim N, Amrani S. The hypolipidaemic activity of aqueous Erica multiflora flowers extract in Triton WR-1339 induced hyperlipidaemic rats: A comparison with fenofibrate. J Ethnopharmacol 2007; 109: 156-160
  • 19 Gratani L, Varone L. Leaf key traits of Erica arborea L., Erica multiflora L. and Rosmarinus officinalis L. co-occurring in the Mediterranean maquis. Flora Morphol Dist Funct Ecol Plants 2004; 199: 58-69
  • 20 Toro Sainz MV, Garcia Gimenez MD, Pascual Martinez M. Isolation and identification of phenol acids from Erica andevalensis Cabezudo-Ribera: their contribution to an antibacterial activity. Ann Pharm Françaises 1987; 45: 401-407
  • 21 Akkol EK, Yeşilada E, Guven A. Valuation of anti-inflammatory and antinociceptive activities of Erica species native to Turkey. J Ethnopharmacol 2008; 116: 251-257
  • 22 Crowden RK, Jarman JR. Anthocyanins in the genus Erica . Phytochemistry 1976; 15: 1796-1797
  • 23 Bennini B, Chulia AJ, Kaouadji M, Delage C. Phytochemistry of the Ericaceae 4. (2R,3R)-Dihidroflavonol aglycone and glicosides from Erica cinerea . Phytochemistry 1993; 33: 1233-1236
  • 24 Gonzalez A, Reyes Ruiz M, Toro Sainz MV. Antimicrobial activity of isolated triterpenic compounds from Erica andevalensis Cabezudo-Ribera. Anal Real Acad Farm 1991; 57: 419-423
  • 25 Kawano M, Han J, Kchouk ME, Isoda H. Hair growth regulation by the extract of aromatic plant Erica multiflora . J Nat Med 2009; 63: 335-339
  • 26 Cole BJW, Bentley MD, Hua Y, Bu L. Triterpenoid constituents in the outer bark of Betula alleghaniensis (Yellow Birch). J Wood Chem Technol 1991; 11: 209-223
  • 27 Prashant A, Krupadanam GLD. Dehydro-6-hydroxyrotenoid and lupenone from Tephrosia villosa . Phytochemistry 1993; 32: 484-486
  • 28 Na M, Kim BY, Osada H, Ahn JS. Inhibition of protein tyrosine phosphatase 1B by lupeol and lupenone isolated from Sorbus commixta . J Enzyme Inhib Med Chem 2009; 24: 1056-1059
  • 29 Wintersteiner O, Krakower G, Moore M. Lupenone and 18α-Oleanan-19α-ol-3-one from Samadera indica . J Org Chem 1965; 30: 2847-2849
  • 30 Hosoi J, Abe E, Suda T, Kuroki T. Regulation of melanin synthesis of B16 mouse melanoma cells by 1a,25-dihydroxyvitamin D3 and retinoic acid. Cancer Res 1985; 45: 1474-1478
  • 31 Lee E, Lee Y, Hwang S, Kim S, Hwang J, Kim T. N-(3, 5-dimethylphenyl)-3-methoxybenzamide (A3B5) targets TRP-2 and inhibits melanogenesis and melanoma growth. J Invest Dermatol 2011; 131: 1701-1709
  • 32 Matsuda H, Hirata N, Kawaguchi Y, Yamazaki M, Naruto S, Shibano M, Taniguchi M, Baba K, Kubo M. Melanogenesis stimulation in murine B16 melanoma cells by Umbeliferae plant extracts and their coumarin constituents. Biol Pharm Bull 2005; 28: 1229-1233
  • 33 Hirata N, Naruto S, Ohguchi K, Akao Y, Nozawa Y, Iinuma M, Matsuda H. Mechanism of the melanogenesis stimulation activity of (−)-cubebin in murine B16 melanoma cells. Bioorg Med Chem 2007; 15: 4897-4902
  • 34 Matsuyama K, Villareal MO, El Omri A, Han J, Kchouk ME, Isoda H. Effect of Tunisian Capparis spinosa L. extract on melanogenesis in B16 murine melanoma cells. Nat Med 2009; 63: 468-472
  • 35 Watters D, Garrone B, Coomer J, Johnson WE, Brown G, Parsons P. Stimulation of melanogenesis in a human melanoma cell line by bistratene A. Biochem Pharmacol 1998; 55: 1691-1699
  • 36 Jung K, Seifert M, Herrling T, Fuchs J. UV-generated free radicals (FR) in skin: their prevention by sunscreens and their induction by self-tanning agents. Spectrochim Acta A: Mol Biomol Spectrosc 2008; 69: 1423-1428
  • 37 Riley PA. Melanin. Int J Biochem Cell Biol 2007; 29: 1235-1239
  • 38 Mosse I, Kostrova L, Subbot S, Maksimenya I, Molophei V. Melanin decreases clastogenic effects of ionizing radiation in human and mouse somatic cells and modifies the radioadaptive response. Radiat Environ Biophys 2000; 39: 47-52
  • 39 Gange RW, Blackett AD, Matzinger EA, Sutherland BM, Kochevar IE. Comparative protection efficiency of UVA- and UVB-induced tans against erythema and formation of endonuclease-sensitive sites in DNA by UVB in human skin. J Invest Dermatol 1985; 85: 362-364
  • 40 Potten CS, Chadwick CA, Cohen AJ, Nikaidos O, Matsunaga T, Schipper NW, Young AR. DNA damage in UV-irradiated human skin in vivo: automated direct analysis (thymine dimers) compared with indirect measurement measurement by image (unscheduled DNA synthesis) and protection by 5-methoxypsoralen. Int J Radiat Biol 1993; 63: 313-324
  • 41 Hearing VJ. Unraveling the melanocyte. Am J Hum Genet 1993; 52: 1-7
  • 42 Ito S, Fujita K, Takahashi H, Jimbow K. Characterization of melanogenesis in mouse and guinea pig hair by chemical analysis of melanins and of free and bound dopa and 5-S-cysteinyldopa. J Invest Dermatol 1984; 83: 12-14
  • 43 Hearing VJ, Ekel TM. Mammalian tyrosinase. A comparison of tyrosine hydroxylation and melanin formation. Biochem J 1976; 157: 549-557
  • 44 Levy C, Khaled M, Fisher DE. MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol Med 2006; 12: 406-414
  • 45 Hemesath TJ, Price ER, Takemoto C, Badalian T, Fisher DE. MAP kinase links the transcription factor microphthalmia to c-Kit signalling in melanocytes. Nature 1998; 391: 298-301
  • 46 Wu M, Hemesath TJ, Takemoto CM, Horstmann MA, Wells AG, Price ER, Fisher DZ, Fisher D. c-Kit triggers dual phosphorylations, which couple activation and degradation of the essential melanocyte factor Mi. Genes Dev 2000; 14: 301-312
  • 47 Chang L, Karin M. Mammalian MAP kinase signaling cascades. Nature 2001; 410: 37-40
  • 48 Schaeffer HJ, Weber MJ. Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol 1999; 19: 2435-2444
  • 49 Kim DS, Kim SY, Chung JH, Kim KH, Eun HC, Park KC. Delayed ERK activation by ceramide reduces melanin synthesis in human melanocytes. Cell Signal 2002; 14: 779-785
  • 50 Kim DS, Hwang ES, Lee JE, Kim SY, Kwon SB, Park KC. Sphingosine-1-phosphate decreases melanin synthesis via sustained ERK activation and subsequent MITF degradation. J Cell Sci 2003; 116: 1699-1706
  • 51 Bertolotto C, Bille K, Ortonne JP, Ballotti R. In B16 melanoma cells, the inhibition of melanogenesis by TPA results from PKC activation and diminution of microphthalmia binding to the M-box of the tyrosinase promoter. Oncogene 1998; 16: 1665-1670
  • 52 Busca R, Abbe P, Mantoux F, Aberdam E, Peyssonnaux C, Eychène A, Ortonne JP, Ballotti R. Ras mediates the cAMP-dependent activation of extracellular signal-regulated kinases (ERKs) in melanocytes. EMBO J 2000; 19: 2900-2910
  • 53 Tsatmali M, Ancans J, Thody AJ. Melanocyte function and its control by melanocortin peptides. J Histochem Cytochem 2002; 50: 125-133
  • 54 Hunt G, Todd C, Cresswell JE, Thody AJ. Alpha-melanocyte stimulating hormone and its analogue Nle4DPhe7 alpha-MSH affect morphology, tyrosinase activity and melanogenesis in cultured human melanocytes. J Cell Sci 1994; 107: 205-211
  • 55 Setzer WN, Setzer MC. Plant-derived triterpenoids as potential antineoplastic agents. Mini Rev Med Chem 2003; 3: 540-556
  • 56 Tolstikova TG, Sorokina IV, Tolstikov GA, Tolstikov AG, Flekhter OB. Biological activity and pharmacological prospects of lupane terpenoids: I. Natural lupane derivatives. Russian J Bioorg Chem 2006; 32: 37-49
  • 57 Na M, Kim BY, Osada H, Ahn JS. Inhibition of protein tyrosine phosphatase 1B by lupeol and lupenone isolated from Sorbus commixta . J Enzyme Inhib Med Chem 2009; 24: 1056-1059
  • 58 Hata K, Hori K, Takahashi S. Differentiation- and apoptosis-inducing activities by pentacyclic triterpenes on a mouse melanoma cell line. J Nat Prod 2002; 65: 645-648
  • 59 Shibahara S, Yasumoto K, Amae S, Udono T, Watanabe K. Regulation of pigment cell-specific gene expression by MITF. Pigment Cell Res 2000; 8 (Suppl.) 104-108
  • 60 Tachibana M. Evidence to suggest that expression of MITF induces melanocyte differentiation and haploinsufficiency of MITF causes Waardenburg syndrome type2A. Pigment Cell Res 1997; 10: 25-33
  • 61 Bellei B, Maresca V, Flori E, Pitisci A, Larue L, Picardo M. p 38 regulates pigmentation via proteasomal degradation of tyrosinase. J Biol Chem 2010; 285: 7288-7299
  • 62 Elmariah SB, Kundu RV. Progressive macular hypomelanosis. J Drugs Dermatol 2011; 10: 502-506