Synthesis 2013; 45(23): 3211-3227
DOI: 10.1055/s-0033-1338549
feature article
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Biologically Active Seven-Membered-Ring Heterocycles

Tristan A. Reekie
a   School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
,
Madeline E. Kavanagh
a   School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
,
Mitchell Longworth
a   School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
,
Michael Kassiou*
a   School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
b   Brain and Mind Research Institute, Sydney, NSW 2050, Australia
c   Discipline of Medical Radiation Sciences, The University of Sydney, Sydney, NSW 2006, Australia
› Author Affiliations
Further Information

Publication History

Received: 05 August 2013

Accepted after revision: 03 October 2013

Publication Date:
24 October 2013 (online)


Abstract

Seven-membered rings that contain one or more heteroatoms are interesting motifs for organic synthesis. In addition to their synthetic interest, they play an important role in industrial and pharmaceutical chemistry with generally increased central nervous system activity when flanked by aromatic rings. Herein we report a brief summary of some key methods of preparation for seven-membered-ring heterocycles and how they have been applied to the synthesis of commercially desirable products. We then detail new methods that we have developed for the synthesis of biologically active compounds containing this motif.

Supporting Information

 
  • References

  • 1 Comprehensive Heterocyclic Chemistry II . Vol. 9. Katritzky AR, Rees CW, Scriven EF. V. Elsevier; Oxford: 1996
  • 2 Carraher CE. J. Chem. Educ. 1978; 55: 51
  • 3 Tucker H, Le Count DJ. 1,4-Azepines . In Comprehensive Heterocyclic Chemistry II . Vol. 9. Katritzky AR, Rees CW, Scriven EF. V. Elsevier; Oxford: 1996: 152
  • 4 Kozikowski AP, Greco MN. J. Org. Chem. 1984; 49: 2310
  • 5 Harrington PJ, Hegedus LS, McDaniel KF. J. Am. Chem. Soc. 1987; 109: 4335
  • 6 Thiele J, Holzinger O. Justus Liebigs Ann. Chem. 1899; 305: 96
    • 7a Schindler W. US 2,948,718, 1960
    • 7b Schindler W. DE 2,011,087, 1970
  • 8 Sternbach LH, Fryer RI, Metlesics W, Reeder E, Sach G, Saucy G, Stempel A. J. Org. Chem. 1962; 27: 3788
  • 9 van der Burg WJ. US 4,145,434, 1977
  • 10 Kemperman GJ, Stuk TL, van der Linden JJ. M. WO 2008,003,460, 2009
  • 11 Cockerill GS, Kocienski P, Treadgold R. J. Chem. Soc., Perkin Trans. 1 1985; 2093
  • 12 Yamamoto K, Yamazaki S. Thiepanes and Thiepines . In Comprehensive Heterocyclic Chemistry II . Vol. 9. Katritzky AR, Rees CW, Scriven EF. V. Elsevier; Oxford: 1996: 67
  • 13 Griebel G, Perrault G, Tan S, Schoemaker H, Sanger DJ. Behav. Pharmacol. 1999; 10: 483
  • 14 Zirkle CL, Pa B. US 3,609,167, 1971
  • 15 Frauenrath H. 1,3-Dioxepanes, 1,3-Oxathiepanes, and 1,3-Dithiepanes . In Comprehensive Heterocyclic Chemistry II . Vol. 9. Katritzky AR, Rees CW, Scriven EF. V. Elsevier; Oxford: 1996: 236
  • 16 Frauenrath H. 1,4-Dioxepanes, 1,4-Oxathiepanes, and 1,4-Dithiepanes . In Comprehensive Heterocyclic Chemistry II . Vol. 9. Katritzky AR, Rees CW, Scriven EF. V. Elsevier; Oxford: 1996: 271
  • 17 Kowalski P, Mitka K, Ossowska K, Kolarska Z. Tetrahedron 2005; 61: 1933
    • 18a Ring RH, Schechter LE, Leonard SK, Dwyer JM, Platt BJ, Graf R, Grauer S, Pulicicchio C, Resnick L, Rahman Z, Sukoff Rizzo SJ, Luo B, Beyer CE, Logue SF, Marquis KL, Hughes ZA, Rosenzweig-Lipson S. Neuropharmacology 2010; 58: 69
    • 18b Hicks C, Jorgensen W, Brown C, Fardell J, Koehbach J, Gruber CW, Kassiou M, Hunt GE, McGregor IS. J. Neuroendocrinol. 2012; 24: 1012
  • 19 Rahman Z, Resnick L, Rosenzweig-Lipson SJ, Ring RH. US 2007,0,117,794, 2007
  • 20 McGregor IS, Callaghan PD, Hunt GE. Brit. J. Pharmacol. 2008; 154: 358
  • 21 Frantz M.-CL, Rodrigo J, Boudier L, Durroux T, Mouillac B, Hibert M. J. Med. Chem. 2010; 53: 1546
  • 22 Hudson P, Pitt G, Batt R, Roe M. WO 2005,023,812, 2005
  • 23 Abd El Latif FM. J. Heterocycl. Chem. 2000; 37: 1659
  • 24 Park MS, Park HJ, Park KH, Lee KI. Synth. Commun. 2004; 34: 1541
  • 25 Potapov AS, Chernova NP, Ogorodnikov VD, Petrenko TV, Khlebnikov AI. Beilstein J. Org. Chem. 2011; 7: 1526
    • 26a Russell GA, Janzen EG. J. Am. Chem. Soc. 1967; 89: 300
    • 26b Gandhi SS, Gibson MS, Kaldas ML, Vines SM. J. Org. Chem. 1979; 44: 4705
  • 27 Paisán-Ruíz C, Jain S, Evans EW, Gilks WP, Simón J, van der Brug M, de Munain AL, Aparicio S, Gil AM, Khan N, Johnson J, Martinez JR, Nicholl D, Carrera IM, Peňa AS, de Silva R, Lees A, Martí-Massó JF, Pérez-Tur J, Wood NW, Singleton AB. Neuron 2004; 44: 595
  • 28 West AB, Moore DJ, Biskup S, Bugayenko A, Smith WW, Ross CA, Dawson VL, Dawson TM. Proc. Natl. Acad. Sci. U.S.A. 2005; 102: 16842
  • 29 Deng X, Dzamko N, Prescott A, Davies P, Liu Q, Yang Q, Lee J.-D, Patricelli MP, Nomanbhoy TK, Alessi DR, Gray NS. Nat. Chem. Biol. 2011; 7: 203