Synlett 2014; 25(1): 110-114
DOI: 10.1055/s-0033-1340068
letter
© Georg Thieme Verlag Stuttgart · New York

Direct C-2 Acylation of Thiazoles with Aldehydes via Metal- and Solvent-Free C–H Activation in the Presence of tert-Butyl Hydroperoxide

Ashok B. Khemnar
Department of Chemistry, Institute of Chemical Technology, N. Parekh Marg, Matunga, Mumbai-400 019, India   Fax: +91(22)33611020   Email: bm.bhanage@gmail.com   Email: bm.bhanage@ictmumbai.edu.in
,
Bhalchandra M. Bhanage*
Department of Chemistry, Institute of Chemical Technology, N. Parekh Marg, Matunga, Mumbai-400 019, India   Fax: +91(22)33611020   Email: bm.bhanage@gmail.com   Email: bm.bhanage@ictmumbai.edu.in
› Author Affiliations
Further Information

Publication History

Received: 31 August 2013

Accepted after revision: 01 October 2013

Publication Date:
05 November 2013 (online)

 


Abstract

A novel and efficient methodology for the synthesis of heteroaryl ketones by C–H activation of aldehydes and thiazoles is developed. The reaction occurs smoothly, under metal-, acid- and solvent-free conditions using tert-butyl hydroperoxide as the oxidant under an air atmosphere, to afford a wide range of heteroaryl ketones in moderate to good yields. The sp2 C–H bonds in the aldehyde and thiazole undergo direct oxidative cross-coupling, resulting in C-2 acylation of the azole.


#

Azole derivatives are important building blocks in various natural products, agrochemicals and biologically active molecules.[1] In this regard, significant progress has been made in developing efficient methodologies for the synthesis of azoles substituted at C-2. Thus, C–C and C–N bond formation between azoles and various moieties such as alkynyl halides,[2] amines,[3] esters,[4] alkyl halides,[5] mesylates,[6] nitriles,[7] benzyl halides,[8] and alkenyl halides[9] have been achieved with considerable efficiency by cross-­coupling at the C-2 position of azoles.

Acylation of azoles is an important approach to the synthesis of various heteroaryl ketones. Anderson and co-workers have developed C-2 acylations of azoles with acyl chlorides.[10] Benzaldehyde as an acylating reagent has also been explored by various groups,[11] the process requiring lithium metal along with inorganic oxidants. Beller and co-workers have reported carbonylative C–H activation of azoles using aryl halides and carbon monoxide gas.[12] Furthermore, the acylations of 2-phenylpyridine,[13] acetanilide[14] and other moieties,[15] via C–H bond activation with different acyl moieties using noble metal catalysts, have been reported.

Metal-free C–C bond formation by C–H activation using milder reaction conditions is a challenging prospect. In this regard, Wang and co-workers reported metal-free amidation[16] and alkylation[17] through oxidative cross-coupling by C–H activation. In addition, the metal-free acylation of heteroaryl moieties has been explored.[18] Thus, we aimed to develop an efficient and mild protocol for the ­acylation of thiazoles with aldehydes via sp2 C–H bond activation at C-2. The present system works efficiently under metal-, acid-, and solvent-free conditions using ­tert-butyl hydroperoxide (TBHP) as an oxidant under an air atmosphere (Scheme [1]).

Zoom Image
Scheme 1 Oxidative acylation of thiazoles with aldehydes

Initially, the reaction of 4,5-dimethylthiazole (1a) with benzaldehyde (2a) was chosen as a model reaction, and the effects of various parameters such as the catalyst, solvent, oxidant, temperature and reaction time were studied. At the outset, we screened various transition-metal salts [Pd(OAc)2, Co(OAc)2, Fe(OAc)2 and FeSO4] for the oxidative cross-coupling of 1a with 2a using tert-butyl hydroperoxide as the oxidant (Table [1], entries 1–4). It was found that palladium acetate [Pd(OAc)2] and iron(II) sulfate (FeSO4) provided the desired product 3a in 10% and 38% yield respectively (Table [1], entries 1 and 4). Furthermore, when the reaction was carried out in the absence of a metal salt, an improvement in the yield (45%) was observed (Table [1], entry 5). Next, we investigated the effect of different solvents on the reaction (Table [1], entries 6 and 7). However, when the reaction was carried out in the absence of a catalyst and solvent, the yield of the desired product 3a increased to 73% (Table [1], entry 8).

We next screened various organic and inorganic oxidants under metal- and solvent-free conditions (Table [1], entries 9–16), and observed that hydrogen peroxide and m-chloroperoxybenzoic acid (MCPBA) were ineffective (Table [1], entries 9 and 10), whilst tert-butyl perbenzoate (TBPB), cumene hydroperoxide (CHP) and aqueous tert-butyl hydroperoxide afforded the expected product in poor yields (Table [1], entries 11–13). Inorganic oxidants did not work under the same reaction conditions (Table [1], entries 14–16). When the reaction was carried out using tert-butyl hydroperoxide as the oxidant without an air atmosphere the yield of the desired product decreased (Table [1], entry 17). Performing the reaction under an oxygen atmosphere also led to a lower yield of the acylation product (Table [1], entry 18). Furthermore, the effect of increasing the number of equivalents of benzaldehyde (2a) showed that the yield of 3a was improved when the 1a:2a ratio was 1:4 (Table [1], entries 8 and 19). We also studied the effect of the tert-butyl hydroperoxide loading and found that four equivalents of the oxidant were necessary to obtain acceptable yields (Table [1], entries 8 and 20). Subsequently, the effect of the reaction time and temperature were examined, and it was found that the highest yield of the product 3a was obtained at 100 °C within 16 hours.

Table 1 Optimization of the Reaction Conditionsa

Entry

Catalyst

Oxidant

Solvent

Yield (%)b

Effect of the catalyst

 1

Pd(OAc)2

TBHP

toluene

10

 2

Co(OAc)2

TBHP

toluene

 3

Fe(OAc)2

TBHP

toluene

 4

FeSO4

TBHP

toluene

38

 5

TBHP

toluene

45

Effect of the solvent

 6

TBHP

PhCl

5

 7

TBHP

MeCN

10

 8

TBHP

73

Effect of the oxidant

 9

H2O2

10

MCPBA

11

TBPB

20

12

CHP

16

13

TBHP (aq)

25

14

I2

15

K2S2O8

15

16

Ag2CO3

17c

TBHP

58

18d

TBHP

13

19e

TBHP

29

20f

TBHP

61

a Reaction conditions: 4,5-dimethylthiazole (1a) (1 mmol), benzaldehyde (2a) (4 mmol), oxidant (4 mmol), catalyst (10 mol%) if necessary, solvent (3 ml) if necessary, 100 °C, air atmosphere, 16 h.

b Yield determined by GC.

c Without an air atmosphere.

d Under an oxygen atmosphere.

e Ratio of 1a/2a = 1:1.

f TBHP (3 equiv, 5–6 M in decane).

With optimized reaction conditions in hand, the scope of the protocol was extended for the synthesis of various acylated thiazole derivatives. As shown in Table [2], the reaction worked efficiently with different aldehydes to provide a wide range of acylated thiazole derivatives in moderate to good yields. The important feature of the present protocol is that acylation of thiazole 1a with ­ortho-, meta-, and para-substituted aldehyde derivatives proceeded well, and the corresponding 2-acylated thiazole products were obtained in good yields (Table [2], entries 1–11), indicating that the steric and electronic effects of the substituents on the aromatic rings of the aldehydes were negligible. The acylation of thiazole 1a with aldehydes bearing electron-donating substituents proceeded smoothly to afford good yields of the corresponding products (Table [2], entries 2–6).

Aldehydes bearing halide substituents also furnished good yields of the corresponding products (Table [2], entries 7–11). The heteroaromatic aldehyde, thiophene-3-carboxaldehyde (2l) smoothly underwent oxidative cross-coupling and provided a moderate yield of the respective product 3l (Table [2], entry 12). Moreover, an aliphatic aldehyde also reacted under the optimized reaction conditions to give a moderate 47% yield of the coupled product 3m (Table [2], entry 13).[19] When the reaction was carried out using 4-methylthiazole (1b), satisfactory yields of the corresponding products were obtained (Table [2], entries 14–16).[20]

Zoom Image
Scheme 2 A plausible reaction mechanism for the acylation of thiazoles with aldehydes

A tentative mechanism to rationalize this transformation is presented in Scheme [2]. The reaction may proceed through the generation of free radicals, the first step involving homolysis of tert-butyl hydroperoxide to generate a hydroxyl radical and an alkoxyl radical. In the next step, these radicals abstract hydrogens from the sp2 C–H (C-2) of 4,5-dimethylthiazole and the aldehydic C–H of benzaldehyde, generating the corresponding free radicals. Finally, the free radicals of 4,5-dimethylthiazole and benzaldehyde react with each other to form a new carbon–carbon bond and generate the acylated derivative (3a) as the major product, along with the minor homo-coupled side product through termination of two radicals of 4,5-dimethylthiazole. It should be noted that the reaction was suppressed by a radical scavenger, such as 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO).

Table 2 Oxidative Acylation of Thiazoles with Various Aldehydesa

Entry

Thiazole

Aldehyde

Product

Yield (%)b

1

1a

2a

3a

70

2

1a

2b

3b

72

3

1a

2c

3c

78

4

1a

2d

3d

73

5

1a

2e

3e

71

6

1a

2f

3f

80

7

1a

2g

3g

72

8

1a

2h

3h

76

9

1a

2i

3i

65

10

1a

2j

3j

72

11

1a

2k

3k

77

12

1a

2l

3l

56

13

1a

2m

3m

47

14

1b

2a

3n

60

15

1b

2b

3o

63

16

1b

2d

3p

64

a Reaction conditions: thiazole (1 mmol), aldehyde (4 mmol), TBHP (4 mmol, 5–6 M in decane), 100 °C, 16 h, air atmosphere, neat.

b Yield of isolated product.

In summary, we have developed an efficient protocol for the direct C-2 acylation of thiazoles with a range of aldehydes, via C–H activation under metal-, acid-, and solvent-free conditions, to give the corresponding acylated thiazole derivatives.[21] Further applications of the present protocol for acylation of various moieties are under progress.


#

Acknowledgment

A.B.K. is grateful to the Council of Scientific and Industrial Research (CSIR) India for providing a Senior Research Fellowship. The authors thank Dr. C. V. Rode from the National Chemical Laboratory, Pune for providing HRMS analysis of products.

Supporting Information

  • References and Notes

    • 1a Gualtiere F, Brody G, Fieldsteel AH, Skinner WA. J. Med. Chem. 1971; 14: 546
    • 1b Zificsak CA, Hlasta DJ. Tetrahedron 2004; 60: 8991
    • 1c Seregin IV, Gevorgyan V. Chem. Soc. Rev. 2007; 36: 1173
    • 1d Trost BM, Fandrick DR. Aldrichimica Acta 2007; 40: 57
    • 1e Satoh T, Miura M. Chem. Lett. 2007; 36: 200
    • 2a Kim SH, Chang S. Org. Lett. 2010; 12: 1868
    • 2b Kawano T, Matsuyama N, Hirano K, Satoh T, Miura M. J. Org. Chem. 2010; 75: 1764
    • 2c Liangyan C, Yan H, Xuesen F. Chin. J. Chem. 2012; 30: 992
    • 3a Wang Q, Schreiber SL. Org. Lett. 2009; 11: 5178
    • 3b Armstrong A, Collins JC. Angew. Chem. Int. Ed. 2010; 49: 2282
    • 3c Kawano T, Hirano K, Satoh T, Miura M. J. Am. Chem. Soc. 2010; 132: 6900
    • 3d Lamani M, Prabhu KR. J. Org. Chem. 2011; 76: 7938
    • 3e Guo S, Qian B, Xie Y, Xia C, Huang H. Org. Lett. 2011; 13: 522
    • 3f Miyasaka M, Hirano K, Satoh T, Kowalczyk R, Bolm C, Miura M. Org. Lett. 2011; 13: 359
    • 3g Wagh YS, Sawant DN, Bhanage BM. Tetrahedron Lett. 2012; 53: 3482
    • 4a Zhang L, Cheng J, Ohishi T, Hou Z. Angew. Chem. Int. Ed. 2010; 49: 8670
    • 4b Vechorkin O, Hirt N, Hu X. Org. Lett. 2010; 12: 3567
    • 5a Vechorkin O, Proust V, Hu X. Angew. Chem. Int. Ed. 2010; 49: 3061
    • 5b Yao T, Hirano K, Satoh T, Miura M. Chem. Eur. J. 2010; 16: 12307
    • 5c Ioannidou HA, Koutentis PA. Org. Lett. 2011; 13: 1510
  • 6 So CM, Lau CP, Kwong FY. Chem. Eur. J. 2011; 17: 761
  • 7 Do HQ, Daugulis O. Org. Lett. 2010; 12: 2517
    • 8a Roger J, Verrier C, Goff RL, Hoarau C, Doucet H. ChemSusChem 2009; 2: 951
    • 8b Shibahara F, Yamaguchi E, Murai T. Chem. Commun. 2010; 46: 2471
    • 8c Ionita M, Roger J, Doucet H. ChemSusChem 2010; 3: 367
    • 8d Bensaid S, Doucet H. ChemSusChem 2012; 5: 1559
  • 9 Besselievre F, Piguel S, Mahuteau-Betzer F, Grierson DS. Org. Lett. 2008; 10: 4029
    • 10a Regel E. Liebigs Ann. Chem. 1977; 159
    • 10b Harn NK, Gramer CJ, Anderson BA. Tetrahedron Lett. 1995; 36: 9453
    • 11a Erne VM, Erlenmeyer H. Helv. Chim. Acta 1948; 31: 652
    • 11b Kurkjy RP, Brown EV. J. Am. Chem. Soc. 1952; 74: 6260
    • 11c Chikashita H, Ishibaba M, Ori K, Itoh K. Bull. Chem. Soc. Jpn. 1988; 61: 3637
    • 11d Kohata K, Kawamonzen Y, Odashima T, Ishii H. Bull. Chem. Soc. Jpn. 1990; 63: 3398
    • 11e Asakawa K.-I, Dhennenberg JJ, Fitch KJ, Hall SS, Kadowaki C, Karady S, Kii S, Maeda K, Marcune BF, Mase T, Miller RA, Reamer RA, Tschaen DM. Tetrahedron Lett. 2005; 46: 5081
  • 12 Wu X.-F, Anbarasan P, Neumann H, Beller M. Angew. Chem. Int. Ed. 2010; 49: 7316
    • 13a Jia X, Zhang S, Wang W, Luo F, Cheng J. Org. Lett. 2009; 11: 3120
    • 13b Basle O, Bidange J, Shuai Q, Li C.-J. Adv. Synth. Catal. 2010; 352: 1145
    • 13c Li M, Ge H. Org. Lett. 2010; 12: 3464
    • 13d Xiao F, Shuai Q, Zhao F, Basle O, Deng G, Li C.-J. Org. Lett. 2011; 13: 1614
    • 13e Guin S, Rout SK, Banerjee A, Nandi S, Patel BK. Org. Lett. 2012; 14: 5294
    • 13f Zhou W, Li H, Wang L. Org. Lett. 2012; 14: 4594
    • 13g Zhang Q, Yang F, Wu Y. Chem. Commun. 2013; 49: 6837
    • 14a Fang P, Li M, Ge H. J. Am. Chem. Soc. 2010; 132: 11898
    • 14b Yuan Y, Chen D, Wang X. Adv. Synth. Catal. 2011; 353: 3373
    • 14c Chan C.-W, Zhou Z, Yu W.-Y. Adv. Synth. Catal. 2011; 353: 2999
    • 14d Li C, Wang L, Li P, Zhou W. Chem. Eur. J. 2011; 17: 10208
    • 14e Wu Y, Li B, Mao F, Li X, Kwong FY. Org. Lett. 2011; 13: 3258
    • 14f Wu Y, Choy PY, Maob F, Kwong FY. Chem. Commun. 2013; 49: 689
    • 15a Chan C.-W, Zhou Z, Chan AS. C, Yu W.-Y. Org. Lett. 2010; 12: 3926
    • 15b Park J, Park E, Kim A, Lee Y, Chi K.-W, Kwak JH, Jung YH, Kim IS. Org. Lett. 2011; 13: 4390
    • 15c Xie Y, Yang Y, Huang L, Zhang X, Zhang Y. Org. Lett. 2012; 14: 1238
    • 15d Wang H, Guo L.-N, Duan X.-H. Org. Lett. 2012; 14: 4358
    • 15e Pana C, Jiab X, Cheng J. Synthesis 2012; 44: 677
    • 15f Zhang Q, Li C, Yang F, Li J, Wu Y. Tetrahedron 2013; 69: 320
  • 16 He T, Li H, Li P, Wang L. Chem. Commun. 2011; 47: 8946
  • 17 He T, Yu L, Zhang L, Wang L, Wang M. Org. Lett. 2011; 13: 5016
    • 18a Zhu Y.-P, Lian M, Jia F.-C, Liu M.-C, Yuan J.-J, Gao Q.-H, Wu A.-X. Chem. Commun. 2012; 48: 9086
    • 18b Zhu Y.-P, Jia F.-C, Liu M.-C, Wu A.-X. Org. Lett. 2012; 14: 4414
    • 18c Matcha K, Antonchick AP. Angew. Chem. Int. Ed. 2013; 52: 2082
  • 19 Brenchley G, Farmer LJ, Harrington EM, Knegtel R, O’Donnell M, Salituro FG, Studley JR, Wang J. EP1605946, 2005 ; Chem. Abstr. 2005, 141, 350190t.
    • 20a Pesson M (Laboratoire Roger Bellon) GB1112128, 1965 ; Chem. Abstr. 1968, 69, 77258x
    • 20b Singh H, Singh DJ, Kumar S. Tetrahedron 1992; 48: 4545
    • 20c Toh QY, McNally A, Vera S, Erdmann N, Gaunt MJ. J. Am. Chem. Soc. 2013; 135: 3772
  • 21 (4,5-Dimethylthiazol-2-yl)(phenyl)methanone (3a); Typical Procedure An oven-dried 15 mL glass vial containing a magnetic stir bar was charged with 4,5-dimethylthiazole (1a) (1 mmol) and benzaldehyde (2a) (4 mmol). The vial was then flushed with air and sealed with a cap. Next, TBHP (4 mmol, 5–6 M in decane) was added dropwise with stirring and the mixture was further stirred at 100 °C for 16 h under an air atm. After cooling the mixture to r.t., it was washed with sat. NaHCO3 solution (1 × 30 mL). The product was extracted with EtOAc (3 × 10 mL) and dried over Na2SO4. The solvent was removed under vacuum and the crude residue was purified by column chromatography (silica gel, 60–100 mesh; PE–EtOAc) to afford pure coupled product 3a. 1H NMR (300 MHz, CDCl3): δ = 8.44–8.41 (m, 2 H), 7.56–7.51 (m, 3 H), 2.47 (s, 3 H), 2.45 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 184.08, 162.58, 151.77, 135.92, 133.25, 131.10, 128.68, 124.02, 15.14, 12.02. GC–MS (EI, 70 eV): m/z (%) = 217 (20) [M]+, 188 (52), 105 (100), 85 (37), 77 (87), 53 (10), 51 (31). HRMS (ESI): m/z [M + H]+ calcd for C12H12NOS: 218.0640; found: 218.0634. (4,5-Dimethylthiazol-2-yl)(p-tolyl)methanone (3b) 1H NMR (300 MHz, CDCl3): δ = 8.34 (d, J = 8.05 Hz, 2 H), 7.29 (d, J = 8.05 Hz, 2 H), 2.46 (s, 3 H), 2.44 (s, 3 H), 2.42 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 183.69, 162.89, 151.60, 144.15, 135.57, 133.01, 131.23, 129.07, 21.80, 15.14, 12.00. GC–MS (EI, 70 eV): m/z (%) = 231 (23) [M]+, 202 (55), 119 (100), 91 (55), 89 (13), 86 (27), 65 (29), 45 (30), 44 (23), 39 (11). HRMS (ESI): m/z [M + H]+ calcd for C13H14NOS: 232.0796; found: 232.0791. (2,6-Dimethylphenyl)(4,5-dimethylthiazol-2-yl)methanone (3c) 1H NMR (300 MHz, CDCl3): δ = 7.52 (t, J = 7.6 Hz, 1 H), 7.05 (d, J = 7.6 Hz, 2 H), 2.45 (s, 3 H), 2.35 (s, 3 H), 2.19 (s, 6 H). 13C NMR (75 MHz, CDCl3): δ = 191.94, 161.71, 152.86, 138.78, 130.63, 129.32, 127.62, 119.38, 19.70, 15.06, 12.22. HRMS (ESI): m/z [M + H]+ calcd for C14H16NOS: 246.0953; found: 246.0947. GC–MS (EI, 70 eV): m/z (%) = 245 (38) [M]+, 228 (16), 218 (18), 217 (100), 216 (63), 202 (18), 133 (37), 105 (56), 103 (24), 86 (60), 79 (32), 78 (14), 77 (41), 71 (22), 53 16), 39 (13).

  • References and Notes

    • 1a Gualtiere F, Brody G, Fieldsteel AH, Skinner WA. J. Med. Chem. 1971; 14: 546
    • 1b Zificsak CA, Hlasta DJ. Tetrahedron 2004; 60: 8991
    • 1c Seregin IV, Gevorgyan V. Chem. Soc. Rev. 2007; 36: 1173
    • 1d Trost BM, Fandrick DR. Aldrichimica Acta 2007; 40: 57
    • 1e Satoh T, Miura M. Chem. Lett. 2007; 36: 200
    • 2a Kim SH, Chang S. Org. Lett. 2010; 12: 1868
    • 2b Kawano T, Matsuyama N, Hirano K, Satoh T, Miura M. J. Org. Chem. 2010; 75: 1764
    • 2c Liangyan C, Yan H, Xuesen F. Chin. J. Chem. 2012; 30: 992
    • 3a Wang Q, Schreiber SL. Org. Lett. 2009; 11: 5178
    • 3b Armstrong A, Collins JC. Angew. Chem. Int. Ed. 2010; 49: 2282
    • 3c Kawano T, Hirano K, Satoh T, Miura M. J. Am. Chem. Soc. 2010; 132: 6900
    • 3d Lamani M, Prabhu KR. J. Org. Chem. 2011; 76: 7938
    • 3e Guo S, Qian B, Xie Y, Xia C, Huang H. Org. Lett. 2011; 13: 522
    • 3f Miyasaka M, Hirano K, Satoh T, Kowalczyk R, Bolm C, Miura M. Org. Lett. 2011; 13: 359
    • 3g Wagh YS, Sawant DN, Bhanage BM. Tetrahedron Lett. 2012; 53: 3482
    • 4a Zhang L, Cheng J, Ohishi T, Hou Z. Angew. Chem. Int. Ed. 2010; 49: 8670
    • 4b Vechorkin O, Hirt N, Hu X. Org. Lett. 2010; 12: 3567
    • 5a Vechorkin O, Proust V, Hu X. Angew. Chem. Int. Ed. 2010; 49: 3061
    • 5b Yao T, Hirano K, Satoh T, Miura M. Chem. Eur. J. 2010; 16: 12307
    • 5c Ioannidou HA, Koutentis PA. Org. Lett. 2011; 13: 1510
  • 6 So CM, Lau CP, Kwong FY. Chem. Eur. J. 2011; 17: 761
  • 7 Do HQ, Daugulis O. Org. Lett. 2010; 12: 2517
    • 8a Roger J, Verrier C, Goff RL, Hoarau C, Doucet H. ChemSusChem 2009; 2: 951
    • 8b Shibahara F, Yamaguchi E, Murai T. Chem. Commun. 2010; 46: 2471
    • 8c Ionita M, Roger J, Doucet H. ChemSusChem 2010; 3: 367
    • 8d Bensaid S, Doucet H. ChemSusChem 2012; 5: 1559
  • 9 Besselievre F, Piguel S, Mahuteau-Betzer F, Grierson DS. Org. Lett. 2008; 10: 4029
    • 10a Regel E. Liebigs Ann. Chem. 1977; 159
    • 10b Harn NK, Gramer CJ, Anderson BA. Tetrahedron Lett. 1995; 36: 9453
    • 11a Erne VM, Erlenmeyer H. Helv. Chim. Acta 1948; 31: 652
    • 11b Kurkjy RP, Brown EV. J. Am. Chem. Soc. 1952; 74: 6260
    • 11c Chikashita H, Ishibaba M, Ori K, Itoh K. Bull. Chem. Soc. Jpn. 1988; 61: 3637
    • 11d Kohata K, Kawamonzen Y, Odashima T, Ishii H. Bull. Chem. Soc. Jpn. 1990; 63: 3398
    • 11e Asakawa K.-I, Dhennenberg JJ, Fitch KJ, Hall SS, Kadowaki C, Karady S, Kii S, Maeda K, Marcune BF, Mase T, Miller RA, Reamer RA, Tschaen DM. Tetrahedron Lett. 2005; 46: 5081
  • 12 Wu X.-F, Anbarasan P, Neumann H, Beller M. Angew. Chem. Int. Ed. 2010; 49: 7316
    • 13a Jia X, Zhang S, Wang W, Luo F, Cheng J. Org. Lett. 2009; 11: 3120
    • 13b Basle O, Bidange J, Shuai Q, Li C.-J. Adv. Synth. Catal. 2010; 352: 1145
    • 13c Li M, Ge H. Org. Lett. 2010; 12: 3464
    • 13d Xiao F, Shuai Q, Zhao F, Basle O, Deng G, Li C.-J. Org. Lett. 2011; 13: 1614
    • 13e Guin S, Rout SK, Banerjee A, Nandi S, Patel BK. Org. Lett. 2012; 14: 5294
    • 13f Zhou W, Li H, Wang L. Org. Lett. 2012; 14: 4594
    • 13g Zhang Q, Yang F, Wu Y. Chem. Commun. 2013; 49: 6837
    • 14a Fang P, Li M, Ge H. J. Am. Chem. Soc. 2010; 132: 11898
    • 14b Yuan Y, Chen D, Wang X. Adv. Synth. Catal. 2011; 353: 3373
    • 14c Chan C.-W, Zhou Z, Yu W.-Y. Adv. Synth. Catal. 2011; 353: 2999
    • 14d Li C, Wang L, Li P, Zhou W. Chem. Eur. J. 2011; 17: 10208
    • 14e Wu Y, Li B, Mao F, Li X, Kwong FY. Org. Lett. 2011; 13: 3258
    • 14f Wu Y, Choy PY, Maob F, Kwong FY. Chem. Commun. 2013; 49: 689
    • 15a Chan C.-W, Zhou Z, Chan AS. C, Yu W.-Y. Org. Lett. 2010; 12: 3926
    • 15b Park J, Park E, Kim A, Lee Y, Chi K.-W, Kwak JH, Jung YH, Kim IS. Org. Lett. 2011; 13: 4390
    • 15c Xie Y, Yang Y, Huang L, Zhang X, Zhang Y. Org. Lett. 2012; 14: 1238
    • 15d Wang H, Guo L.-N, Duan X.-H. Org. Lett. 2012; 14: 4358
    • 15e Pana C, Jiab X, Cheng J. Synthesis 2012; 44: 677
    • 15f Zhang Q, Li C, Yang F, Li J, Wu Y. Tetrahedron 2013; 69: 320
  • 16 He T, Li H, Li P, Wang L. Chem. Commun. 2011; 47: 8946
  • 17 He T, Yu L, Zhang L, Wang L, Wang M. Org. Lett. 2011; 13: 5016
    • 18a Zhu Y.-P, Lian M, Jia F.-C, Liu M.-C, Yuan J.-J, Gao Q.-H, Wu A.-X. Chem. Commun. 2012; 48: 9086
    • 18b Zhu Y.-P, Jia F.-C, Liu M.-C, Wu A.-X. Org. Lett. 2012; 14: 4414
    • 18c Matcha K, Antonchick AP. Angew. Chem. Int. Ed. 2013; 52: 2082
  • 19 Brenchley G, Farmer LJ, Harrington EM, Knegtel R, O’Donnell M, Salituro FG, Studley JR, Wang J. EP1605946, 2005 ; Chem. Abstr. 2005, 141, 350190t.
    • 20a Pesson M (Laboratoire Roger Bellon) GB1112128, 1965 ; Chem. Abstr. 1968, 69, 77258x
    • 20b Singh H, Singh DJ, Kumar S. Tetrahedron 1992; 48: 4545
    • 20c Toh QY, McNally A, Vera S, Erdmann N, Gaunt MJ. J. Am. Chem. Soc. 2013; 135: 3772
  • 21 (4,5-Dimethylthiazol-2-yl)(phenyl)methanone (3a); Typical Procedure An oven-dried 15 mL glass vial containing a magnetic stir bar was charged with 4,5-dimethylthiazole (1a) (1 mmol) and benzaldehyde (2a) (4 mmol). The vial was then flushed with air and sealed with a cap. Next, TBHP (4 mmol, 5–6 M in decane) was added dropwise with stirring and the mixture was further stirred at 100 °C for 16 h under an air atm. After cooling the mixture to r.t., it was washed with sat. NaHCO3 solution (1 × 30 mL). The product was extracted with EtOAc (3 × 10 mL) and dried over Na2SO4. The solvent was removed under vacuum and the crude residue was purified by column chromatography (silica gel, 60–100 mesh; PE–EtOAc) to afford pure coupled product 3a. 1H NMR (300 MHz, CDCl3): δ = 8.44–8.41 (m, 2 H), 7.56–7.51 (m, 3 H), 2.47 (s, 3 H), 2.45 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 184.08, 162.58, 151.77, 135.92, 133.25, 131.10, 128.68, 124.02, 15.14, 12.02. GC–MS (EI, 70 eV): m/z (%) = 217 (20) [M]+, 188 (52), 105 (100), 85 (37), 77 (87), 53 (10), 51 (31). HRMS (ESI): m/z [M + H]+ calcd for C12H12NOS: 218.0640; found: 218.0634. (4,5-Dimethylthiazol-2-yl)(p-tolyl)methanone (3b) 1H NMR (300 MHz, CDCl3): δ = 8.34 (d, J = 8.05 Hz, 2 H), 7.29 (d, J = 8.05 Hz, 2 H), 2.46 (s, 3 H), 2.44 (s, 3 H), 2.42 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 183.69, 162.89, 151.60, 144.15, 135.57, 133.01, 131.23, 129.07, 21.80, 15.14, 12.00. GC–MS (EI, 70 eV): m/z (%) = 231 (23) [M]+, 202 (55), 119 (100), 91 (55), 89 (13), 86 (27), 65 (29), 45 (30), 44 (23), 39 (11). HRMS (ESI): m/z [M + H]+ calcd for C13H14NOS: 232.0796; found: 232.0791. (2,6-Dimethylphenyl)(4,5-dimethylthiazol-2-yl)methanone (3c) 1H NMR (300 MHz, CDCl3): δ = 7.52 (t, J = 7.6 Hz, 1 H), 7.05 (d, J = 7.6 Hz, 2 H), 2.45 (s, 3 H), 2.35 (s, 3 H), 2.19 (s, 6 H). 13C NMR (75 MHz, CDCl3): δ = 191.94, 161.71, 152.86, 138.78, 130.63, 129.32, 127.62, 119.38, 19.70, 15.06, 12.22. HRMS (ESI): m/z [M + H]+ calcd for C14H16NOS: 246.0953; found: 246.0947. GC–MS (EI, 70 eV): m/z (%) = 245 (38) [M]+, 228 (16), 218 (18), 217 (100), 216 (63), 202 (18), 133 (37), 105 (56), 103 (24), 86 (60), 79 (32), 78 (14), 77 (41), 71 (22), 53 16), 39 (13).

Zoom Image
Scheme 1 Oxidative acylation of thiazoles with aldehydes
Zoom Image
Scheme 2 A plausible reaction mechanism for the acylation of thiazoles with aldehydes