Synlett 2014; 25(1): 97-101
DOI: 10.1055/s-0033-1340072
letter
© Georg Thieme Verlag Stuttgart · New York

One-Pot Synthesis of Cyclic Carbonates from Aldehydes, Sulfur Ylide, and CO2

Ravindra D. Aher
Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pashan Road, Pune – 411 008, India   Fax: +91(20)25902676   Email: a.sudalai@ncl.res.in
,
B. Senthil Kumar
Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pashan Road, Pune – 411 008, India   Fax: +91(20)25902676   Email: a.sudalai@ncl.res.in
,
Arumugam Sudalai*
Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pashan Road, Pune – 411 008, India   Fax: +91(20)25902676   Email: a.sudalai@ncl.res.in
› Author Affiliations
Further Information

Publication History

Received: 19 July 2013

Accepted after revision: 01 October 2013

Publication Date:
07 November 2013 (online)

 


Abstract

Treatment of aldehydes with sulfur ylide (CH2=SOMe2 or CH2=SMe2), in the presence of CO2 (1 atm) bubbled sequentially under mild conditions, produces cyclic carbonates in preparative yields. Sodium iodide formed in situ promotes the reaction between epoxide as intermediate and CO2 at ambient conditions, thus constituting a powerful metal-free synthesis of organic cyclic carbonates directly from aldehydes.


#

Carbon dioxide is one of the major constituents of greenhouse gases, and to control its rapidly increased concentration in atmosphere is a major challenge for scientific communities.[1] Global-warming concern has dramatically increased interest in using CO2 as a feedstock for the preparation of value-added chemicals.[1j] Although CO2 is an attractive nonhazardous C1 synthon in abundance, its utilization in chemical transformations remains challenging because of its high thermodynamic stability and low chemical reactivity.[2] In particular, the synthesis of low-energy target molecules (e.g., organic carbonates) represents a promising alternative to overcome this thermodynamics. Organic cyclic carbonates are biodegradable chemicals that find tremendous applications as electrolytic materials in lithium ion batteries, polar aprotic solvents, intermediates in the production of pharmaceuticals and fine chemicals, as well as for developing engineered polymeric materials.[3] Biologically active molecules that contain a cyclic carbonate moiety have also been isolated from various natural sources.[4] In literature, cyclic carbonates are generally prepared by the cycloaddition of CO2 with epoxides in the presence of many activating reagents such as quaternary ammonium salts,[5a] [b] [c] azaphosphatranes,[5d] metal–salen complexes derived from Al, Zn, Mg, and other first-row transition metals.[6] Other methods of their synthesis include the reaction of CO2 with styrenes,[7] propargyl alcohols,[8] allyl alcohols,[9] diols,[10] or halohydrins.[11] Although these reported methods provide a simple route for the environmentally benign chemical fixation of CO2 to produce cyclic carbonates, these have certain limitations such as dependence on epoxides as starting materials, use of toxic or costly reagents, relatively high pressure and temperature, often requiring a tedious workup procedure for their isolation. Sulfur ylides have been widely employed in the conversion of aldehydes into epoxides (Corey–Chaykovsky reaction) in organic synthesis, thereby serving as C1 carbon source under ambient conditions.[12] In this note, we wish to disclose an efficient and metal-free, one-pot procedure for the synthesis of organic cyclic carbonates by the sequential reaction of aldehydes with sulfur ylides (CH2=SOMe2 or CH2=SMe2) followed by its reaction with CO2 (1 atm) in the absence of heavy-metal additives under ambient conditions (Scheme [1]).

Zoom Image
Scheme 1 Synthesis of cyclic carbonates from aldehydes, sulfur ylide, and CO2

Preliminary experiments have shown that when all the three components (aldehyde, sulfur ylide, and CO2) were treated together at 25 °C in DMSO, a stable, colorless adduct[12] (mp 135–137 °C) was obtained instantaneously due to the preferential reaction of sulfur ylide with CO2. It was then reasoned that CO2 could be bubbled sequentially after the in situ formation of epoxide from aldehyde and sulfur ylide.

Table 1 Optimization Parameters for Cyclic Carbonatesa

Entry

Solvent

Temp (°C)

Time (h)

Yield of 2a (%)b

Yield of 3a (%)b

Yield of 4a (%)b

1

DMSO

 25

12

95

2

DMSO

 40

12

65

30

3

DMSO

 60

12

53

41

4

DMSO

 80

12

23

71

5

DMSO

100

12

87

6

DMSO–THF(1:1)

 25

12

96

7

DMSO–THF(1:1)

 40

 6

94

a Aldehyde (3 mmol), NaH (3.3 mmol), Me3SOI (3.3 mmol), solvent (20 mL).

b Isolated yield after column chromatographic purification.

The CO2 insertion into epoxide can be further facilitated by NaI as promoter formed in the reaction. However, when CO2 (1 atm) was bubbled into the reaction mixture at 25 °C after one hour (by which time the complete formation of epoxide has taken place), only epoxide 2a was isolated in 95% yield (Table [1], entry 1). At 40 °C, it gave the desired cyclic carbonate 4a (30%) along with significant amount of iodo alcohol 3a (65%). Subsequently it was found that the yield of 4a was, however, dependent linearly on temperature (Table [1], entries 3–5). At this stage, it was thought that by reducing the polarity of the solvent, the nucleophilicity of the iodo alkoxide 3 (Scheme [2]) could be increased for its reaction with CO2 so as to maximize the yield of 4a.[11] Thus, when the reaction was carried out with a relatively low polar solvent system (DMSO–THF, 1:1) at 25 °C under CO2 (1 atm), no cyclic carbonate was observed; only epoxide 2a was again obtained in 96% yield. Finally, at 40 °C, a dramatic improvement in yield of 4a (94%) was achieved with the same solvent system Table [1], entry 7). Unfortunately, other bases (KOH, NaOH, KOt-Bu)[13] were not as effective as NaH. With the optimized reaction conditions in hand,[16] we then examined the substrate scope of the reaction (Table [2]). Even lower members of cyclic carbonates of commercial importance (4b and 4c) can be prepared in moderate to good yields. Further, aldehydes bearing halo, cyano, nitro, methoxy, and methylene dioxy groups on the aromatic nucleus and functionalized aliphatic aldehydes underwent this sequential reaction smoothly to afford the corresponding cyclic carbonates 4av in high yields. Among the substrates screened, aldehdyes with halo 4kn and cyano 4t substituents on the aromatic nucleus were found to be the best substrates for this methodology.

Volatile aliphatic and conjugated aldehydes[14] were also converted into the corresponding cyclic carbonates 4bh in high yields (Table [2], entries 2–8). Also, chiral amino aldehyde 1u gave the corresponding cyclic carbonate 4u efficiently under the reaction conditions (Table [2], entry 21). Cyclic carbonates 4av have exhibited a strong IR absorption in the range 1792–1822 cm–1 due to the C=O stretching vibration of the cyclic carbonate moiety.

Table 2 Cyclic Carbonates from Aldehydes and CH2=SOMe2 or CH2=SMe2 with CO2 a

Entry

Aldehydes 1

Yield of cyclic carbonates (%)b

 1

benzaldehyde (1a)

4a 94

 2

acetaldehyde (1b)

4b 40

 3

propionaldehyde (1c)

4c 65

 4

isobutyraldehyde (1d)

4d 73

 5

n-pentanal (1e)

4e 89

 6

n-heptanal (1f)

4f 94

 7b

acrolein (1g)

4g 65

 8b

cinnamaldehyde (1h)

4h 98

 9

2-methoxybenzaldehyde (1i)

4i 85

10

3,4,5-trimethoxybenzaldehyde (1j)

4j 90

11

4-fluorobenzaldehyde (1k)

4k 90

12

4-chlorobenzaldehyde (1l)

4l 87

13

2-bromobenzaldehyde (1m)

4m 96

14

4-trifluoromethylbenzaldehyde (1n)

4n 98

15

2-nitrobenzaldehyde (1o)

4o 79

16

3-nitrobenzaldehyde (1p)

4p 75

17

piperonal (1q)

4q 86

18

3-benzyloxy-1-propanal (1r)

4r 80

19

3-phenylpropanal (1s)

4s 77

20

3,4-(OMe)2-2-CN-phenyl-propanal (1t)

4t 83

21

(S)-(α-NHBoc)-3-phenyl-propanal (1u)

4u 79

22

4-thiomethylbenzaldehyde (1v)

4v 90

a Reaction conditions: aldehyde (3 mmol), NaH (3.3 mmol), Me3SOI (3.3 mmol), DMSO (10 mL), THF (10 mL), 25 °C, 1 h, then CO2 bubbling 40 °C, 6 h.

b Dimethylsulfonium methylide was used instead of dimethyloxosulfonium methylide.

For comparative studies, it was of interest to investigate the effect of temperature on cycloaddition of styrene epoxide with CO2 using various alkali metal iodides. Thus, when styrene epoxide was treated with CO2 (1.0133 bar) in the presence of NaI (100 mol%) in DMSO–THF (1:1) at 25 °C for 12 hours, no reaction took place. However, when the same reaction was carried out at 40 °C for six hours, the corresponding styrene cyclic carbonate was obtained in 95% yield. Also, other alkali metal iodides (KI and LiI, in stoichiometric amount) under the same reaction conditions, could be employed to give the styrene cyclic carbonate in 73% and 83% yield, respectively. NaI could also be used in catalytic amount (10 mol%) to give styrene cyclic carbonate in 91% yield, although it took 38 hours to completion. From the above investigations, we strongly believe that a slightly higher temperature (40 °C) is needed for the activation of styrene epoxide by alkali metal iodide.

Based on the above observations, a probable mechanistic pathway for the formation of cyclic carbonates is shown in Scheme [2].[15] Firstly, aldehydes 1av react with sulfur ylide (generated in situ from O=SMe3I and NaH in ­DMSO) to form epoxide 2 which was isolated and characterized. Subsequently, NaI formed in situ in the reaction medium promotes the regioselective ring opening of epoxide 2 to give iodo alkoxide complex 3 (confirmed by isolation and characterization of iodoalcohol 3a, see Table [1]). This is followed by its simultaneous insertion with CO2 producing the intermediate I, cyclization of which results in the formation of cyclic carbonates 4av.

Zoom Image
Scheme 2 Pathway for the formation of cyclic carbonates from aldehydes, sulfur ylide, and CO2

In summary, we have described, for the first time, a novel ‘one-pot’ procedure that involves reaction of aldehydes 1av with sulfur ylides, followed by CO2 insertion in a ­sequential fashion leading to the high-yield synthesis of cyclic carbonates 4av. The salient features of the methodology are as follows: (1) unprecedented one-pot synthesis of organic cyclic carbonates directly from aldehydes; (2) inexpensive and commercially available starting materials; (3) metal-free synthesis; (4) water-soluble NaI acts as a promoter; (5) milder reaction conditions; (6) functional-group tolerance; and (7) high yields of cyclic carbonates.


#

Acknowledgment

We sincerely thank CSIR, New Delhi, India (NWP-0021B) for financial support. RDA and BSK thank CSIR, New Delhi, India for research fellowships. Authors also thank Dr V. V. Ranade, Chair, Chemical Eng. & Process Develop. Div. and Dr B. D. Kulkarni, Distinguished Scientist for their constant encouragement and support.

Supporting Information

  • References and Notes

    • 1a Sakakura T, Choi JC, Yasuda H. Chem. Rev. 2007; 107: 2365
    • 1b Braunstein P, Matt D, Nobel D. Chem. Rev. 1988; 88: 747
    • 1c Behr A. Angew. Chem., Int. Ed. Engl. 1988; 27: 661
    • 1d Jessop PG, Joo F, Tai CC. Coord. Chem. Rev. 2004; 248: 2425
    • 1e Darensbourg DJ. Chem. Rev. 2007; 107: 2388
    • 1f Eghbali N, Li CJ. Green Chem. 2007; 9: 213
    • 1g Riduan SN, Zhang Y. Dalton Trans. 2010; 39: 3347
    • 1h Sakakura T, Kohon K. Chem. Commun. 2009; 1312
    • 1i Aher RD. Gade M. H. Reddy R. S, Sudalai A. Indian J. Chem., Sect. A: Inorg., Bio-inorg., Phys., Theor. Anal. Chem. 2012; 51: 1325
    • 1j Olah GA. Angew. Chem. Int. Ed. 2005; 44: 2636
    • 2a Zevenhoven R, Eloneva S, Teir S. Catal. Today 2006; 115: 73
    • 2b Aresta M, Dibenedetto A, Tommasi I. Energy Fuels 2001; 15: 269
    • 2c Tundo P, Selva M. Acc. Chem. Res. 2002; 35: 706
    • 2d Aida T, Inoue S. Acc. Chem. Res. 1998; 29: 39
    • 2e Riduan SN, Zhang Y, Ying JY. Angew. Chem. Int. Ed. 2009; 48: 3322
    • 2f Gu L, Zhang Y. J. Am. Chem. Soc. 2010; 132: 914
    • 3a Schaffner B, Schaffner F, Verevkin SP, Borner A. Chem. Rev. 2010; 110: 4554
    • 3b Shaikh AA. G, Sivaram S. Chem. Rev. 1996; 96: 951
    • 3c Clements JH. Ind. Eng. Chem. Res. 2003; 42: 663
    • 4a Davis RA, Andjic V, Kotiw M, Shivas RG. Phytochemistry 2005; 66: 2771
    • 4b Liu Z, Jensen PR, Fenical W. Phytochemistry 2003; 64: 571
    • 5a Ream BC. US 4,877,886, 1989
    • 5b McMullen CH, Nelson JR, Ream BC, Sims JA. J. US 4,314,945, 1982
    • 5c Peppel WJ. J. Ind. Eng. Chem. 1958; 50: 767
    • 5d Chatelet B, Joucla L, Dutasta J.-P, Martinez A, Szeto KC, Dufaud V. J. Am. Chem. Soc. 2013; 135: 5348
    • 6a Lu X.-B, He R, Bai C.-X. J. Mol. Catal. A: Chem. 2002; 186: 1
    • 6b Lu X.-B, Liang B, Zhang Y.-J, Tian Y.-Z, Wang Y.-M, Bai C.-X, Wang H, Zhang R. J. Am. Chem. Soc. 2004; 126: 3732
    • 6c Melendez J, North M, Pasquale R. Eur. J. Inorg. Chem. 2007; 3323
    • 6d Melendez J, North M, Villuendas P. Chem. Commun. 2009; 2577
    • 6e North M, Pasquale R. Angew. Chem. Int. Ed. 2009; 48: 2946
    • 6f Paddock RL, Nguyen ST. Chem. Commun. 2004; 1622
    • 6g Darensbourg DJ, Bottarelli P, Andreatta JR. Macromolecules 2007; 40: 7727
    • 6h Darensbourg DJ, Fang CC, Rodgers JL. Organometallics 2004; 23: 924
    • 6i Lu XB, Pan YZ, Ji DF, He R. Chin. Chem. Lett. 2000; 11: 589
    • 7a Wang JL, Wang JQ, He LN, Dou XY, Wu F. Green Chem. 2008; 10: 1218
    • 7b Bai DS, Jing HW. Green Chem. 2010; 12: 39
  • 8 Satoshi K, Shunsuke Y, Yuudai S, Wataru Y, Hau MC, Kosuke F, Kohei S, Izumi I, Taketo I, Tohru Y. Bull. Chem. Soc. Jpn. 2011; 84: 698
  • 9 Minakata S, Sasaki I, Ide T. Angew. Chem. Int. Ed. 2010; 49: 1309
    • 10a Du Y, Kong DL, Wang HY, Cai F, Tian JS, Wang JQ, He LN. J. Mol. Catal. A: Chem. 2005; 241: 233
    • 10b Du Y, He LN. Catal. Commun. 2008; 9: 1754
  • 11 Peng Y, Xueqin T, Huanwang J, Shuhui D, Xiaoxuan W, Zhongli L. J. Org. Chem. 2011; 76: 2459
    • 12a Corey EJ, Chaykovsky M. J. Am. Chem. Soc. 1965; 87: 1353
    • 12b Melting point was found to be in agreement with the reported value.
    • 13a Ylide generation failed with NaOH.
    • 13b Diol was obtained in 48% yield with KOH.
    • 13c Trace amount (5%) of epoxide was obtained using KOt-Bu as base.
  • 14 Dimethylsulfonium methylide was used instead of dimethyloxosulfonium methylide
  • 15 North M, Pasquale R. Angew. Chem. Int. Ed. 2009; 48: 2946
  • 16 General Description Solvents were purified and dried by standard procedures before use; PE of boiling range 60–80 °C was used. Melting points are uncorrected and recorded on a Buchi B-542 instrument. 1H NMR and 13C NMR spectra were recorded on Bruker AC-200 spectrometer unless mentioned otherwise. Elemental analysis was carried out on a Carlo Erba CHNS-O analyzer. Infrared spectra were recorded on Shimadzu FTIR-8400 spectrometer and absorption is expressed in cm–1. HRMS data for new compounds were recorded on a Thermo Scientific Q-Exactive, Accela 1250 pump. Purification was done using column chromatography (230–400 mesh). General Experimental Procedure for the Preparation of Cyclic Carbonates 4a–v NaH (0.132 g, 3.3 mmol; previously washed with anhydrous PE to remove oil) was taken in an oven-dried three-necked flask, followed by addition of anhydrous DMSO (10 mL) through a septum to it, and the whole slurry was stirred at 25 °C under N2 atmosphere. Solid Me3SOI (0.726 g, 3.3 mmol) was added to the slurry with stirring over a period of 5 min via a solid addition funnel until it becomes a homogeneous solution. A solution of aldehyde 1av (3 mmol), dissolved in anhydrous THF (10 mL), was added dropwise to the reaction mixture. After 1 h, CO2 (1 atm) was then bubbled slowly via a needle into the reaction mixture, (after ascertaining that aldehyde was completely converted into epoxide, monitored by TLC) at 40 °C, for 6 h. Water (10 mL) was added to quench the reaction. It was then extracted with EtOAc (3 × 20 mL); the organic layer was washed with brine and dried over anhydrous Na2SO4 and the solvent concentrated, product purified by silica gel column chromatography (100–200 mesh) using PE and EtOAc (70:30) as eluent to afford pure cyclic carbonates 4av. 4-Phenyl-1,3-dioxolan-2-one (4a) Yield 94% (463 mg, 2.82 mmol); colorless solid; mp 53–54 °C (lit. mp 51–53 °C). IR (CHCl3): νmax = 769, 1068, 1168, 1328, 1458, 1812 cm–1. 1H NMR (200 MHz, CDCl3): δ = 4.29 (t, J = 7.9 Hz, 1 H), 4.77 (t, J = 7.9 Hz, 1 H), 5.64 (t, J = 7.9 Hz, 1 H), 7.32–7.42 (m, 5 H). 13C NMR (50 MHz, CDCl3): δ = 70.9, 77.8, 125.7, 129.0, 129.4, 135.8, 154.6. Anal. Calcd (%) for C9H8O3: C, 65.85; H, 4.91. Found: C, 65.84; H, 4.90. 4-Methyl-1,3-dioxolan-2-one (4b) Yield 40% (122.5 mg, 1.2 mmol); colorless oil; IR (CHCl3): νmax = 711, 776, 1051, 1120, 1183, 1354, 1389, 1793 cm–1. 1H NMR (200 MHz, CDCl3): δ = 1.49 (d, J = 6.1 Hz, 3 H), 4.02 (dd, J = 8.2, 1.0 Hz, 1 H), 4.55 (t, J = 8.0 Hz, 1 H), 4.77–4.94 (m, 1 H). 13C NMR (100 MHz, CDCl3): δ = 19.0, 70.4, 73.4, 154.8. Anal. Calcd (%) for C4H6O3: C, 47.06; H, 5.92. Found: C, 47.04; H, 5.91. 4-Ethyl-1,3-dioxolan-2-one (4c) Yield 65% (226.4 mg, 1.95 mmol); colorless oil. IR (CHCl3): νmax = 1060, 1177, 1377, 1797 cm–1. 1H NMR (200 MHz, CDCl3): δ = 1.03 (t, J = 7.4 Hz, 3 H), 1.72–1.87 (m, 2 H), 4.1 (dd, J = 8.2, 1.5 Hz, 1 H), 4.55 (t, J = 8.2 Hz, 1 H), 4.63–4.73 (m, 1 H). 13C NMR (50 MHz, CDCl3): δ = 7.9, 26.2, 68.5, 77.6, 154.6. Anal. Calcd (%) for C5H8O3: C, 51.72; H, 6.94. Found: C, 51.75; H, 6.91. 4-Isopropyl-1,3-dioxolan-2-one (4d) Yield 73% (285 mg, 2.19 mmol); colorless oil. IR (CHCl3): νmax = 1075, 1175, 1392, 1789 cm–1. 1H NMR (200 MHz, CDCl3): δ = 0.95 (d, J = 6.8 Hz, 3 H), 1.04 (d, J = 6.5 Hz, 3 H), 1.90–2.00 (m, 1 H), 4.12–4.18 (m, 1 H), 4.37–4.53 (m, 2 H). 13C NMR (50 MHz, CDCl3): δ = 16.4, 16.8, 31.4, 67.2, 80.9, 154.6. HRMS (ESI+): m/z = calcd for (C6H10O3)+ [M + H]+: 131.0709; found: 131.0708. Anal. Calcd (%) for C6H10O3: C, 55.37; H, 7.75. Found: C, 55.40; H, 7.71. 4-Butyl-1,3-dioxolan-2-one (4e) Yield 89% (384.9 mg, 2.6 mmol); gum. IR (CHCl3): νmax = 1066, 1173, 1797 cm–1. 1H NMR (200 MHz, CDCl3): δ = 0.88–0.95 (m, 3 H), 1.23–1.40 (m, 3 H), 1.68–1.80 (m, 3 H), 4.05 (dd, J = 8.2, 1.0 Hz, 1 H), 4.51 (t, J = 8.2 Hz, 1 H), 4.62–4.76 (m, 1 H). 13C NMR (50 MHz, CDCl3): δ = 13.8, 22.2, 26.4, 33.6, 69.3, 76.9, 154.9. Anal. Calcd (%) for C7H12O3: C, 58.32; H, 8.39. Found: C, 58.34; H, 8.38%. 4-Hexyl-1,3-dioxolan-2-one (4f) Yield 94% (486 mg, 2.82 mmol); gum. IR (CHCl3): νmax = 772, 1065, 1170, 1802 cm–1. 1H NMR (200 MHz, CDCl3): δ = 0.86–0.93 (m, 3 H), 1.30–1.49 (m, 8 H), 1.69–1.80 (m, 2 H), 4.06 (t, J = 7.2 Hz, 1 H), 4.51 (t, J = 8.0 Hz, 1 H), 4.62–4.76 (m, 1 H). 13C NMR (50 MHz, CDCl3): δ = 13.9, 22.4, 24.3, 28.7, 31.4, 33.8, 69.2, 76.8, 154.8. Anal. Calcd (%) for C9H16O3: C, 62.77; H, 9.36. Found: C, 62.73; H, 9.40. 4-Vinyl-1,3-dioxolan-2-one (4g) Yield 65% (222.5 mg, 1.95 mmol); yellow oil. IR (CHCl3): νmax = 772, 991, 1060, 1168, 1385, 1510, 1805 cm–1. 1H NMR (200 MHz, CDCl3): δ = 4.17 (t, J = 7.8 Hz, 1 H), 4.61 (t, J = 8.4 Hz, 1 H), 5.12 (dd, J = 14.9, 7.5 Hz, 1 H), 5.48 (t, J = 16.5 Hz, 2 H), 5.83–6.0 (m, 1 H). 13C NMR (50 MHz, CDCl3): δ = 68.8, 76.8, 120.9, 132.2, 154.2. HRMS (ESI+): m/z calcd for (C5H6O3)+ [M + H]+: 115.0396; found: 115.0392; Anal. Calcd (%) for C5H6O3: C, 52.63; H, 5.30. Found: C, 52.61; H, 5.32. (E)-4-Styryl-1,3-dioxolan-2-one (4h) Yield 98% (559 mg, 2.94 mmol); colorless solid; mp 115–116 °C. IR (CHCl3): νmax = 1049, 1070, 1168, 1648, 1800 cm–1. 1H NMR (200 MHz, CDCl3): δ = 4.23 (t, J = 8.0 Hz, 1 H), 4.64 (t, J = 8.2 Hz, 1 H), 5.26 (q, J = 7.9 Hz, 1 H), 6.15 (dd, J = 15.7, 7.7 Hz, 1 H), 6.73 (d, J = 15.7 Hz, 1 H), 7.26–7.40 (m, 5 H). 13C NMR (50 MHz, CDCl3): δ = 69.2, 77.6, 122.4, 126.9, 128.8, 129.0, 134.8, 136.6, 154.4. HRMS (ESI+): m/z calcd for (C11H10O3)+ [M + Na]+: 213.0527; found: 213.0522. Anal. Calcd (%) for C11H10O3: C, 69.46; H, 5.30. Found: C, 69.41; H, 5.33. 4-(2-Methoxyphenyl)-1,3-dioxolan-2-one (4i) Yield 85% (495 mg, 2.55 mmol); gum. IR (CHCl3): νmax = 757, 1076, 1166, 1249, 1494, 1812 cm–1. 1H NMR (200 MHz, CDCl3): δ = 3.86 (s, 3 H), 4.25 (dd, J = 8.4, 1.1 Hz, 1 H), 4.82 (t, J = 8.4 Hz, 1 H), 5.81 (t, J = 8.0 Hz, 1 H), 6.90–7.04 (m, 2 H), 7.32–7.38 (m, 2 H). 13C NMR (50 MHz, CDCl3): δ = 55.4, 70.5, 74.7, 110.5, 120.9, 124.9, 126.1, 130.3, 154.9, 156.1. Anal. Calcd (%) for C10H10O4: C, 61.85; H, 5.19. Found: C, 61.79; H, 5.14. 4-(3,4,5-Trimethoxyphenyl)-1,3-dioxolan-2-one (4j) Yield 90% (686 mg, 2.7 mmol); brown solid; mp 133–134 °C. IR (CHCl3): νmax = 1068, 1125, 1243, 1510, 1796 cm–1. 1H NMR (200 MHz, CDCl3): δ = 3.84 (s, 3 H), 3.88 (s, 6 H), 4.31 (t, J = 8.3 Hz, 1 H), 4.78 (t, J = 8.4 Hz, 1 H), 5.60 (t, J = 7.9 Hz, 1 H), 6.54 (s, 2 H). 13C NMR (50 MHz, CDCl3): δ = 56.1, 60.7, 71.1, 78.0, 102.6, 131.2, 138.8, 153.8, 154.5. HRMS (ESI+): m/z calcd for (C12H14O6)+ [M + H]+: 255.0869; found: 255.0855. Anal. Calcd (%) for C12H14O6: C, 56.69; H, 5.55. Found: C, 56.62; H, 5.50. 4-(4-Fluorophenyl)-1,3-dioxolan-2-one (4k) Yield 90% (492 mg, 2.7 mmol); colorless solid; mp 91–92 °C. IR (CHCl3): νmax = 773, 840, 1069, 1161, 1210, 1385, 1514, 1818 cm–1. 1H NMR (200 MHz, CDCl3): δ = 4.31 (t, J = 8.2 Hz, 1 H), 4.80 (t, J = 8.3 Hz, 1 H), 5.66 (t, J = 8.0 Hz, 1 H), 7.08–7.19 (m, 2 H), 7.32–7.40 (m, 2 H). 13C NMR (50 MHz, CDCl3): δ = 71.0, 77.3, 116, 116.5, 127.9, 128.0, 131.6, 154.4, 160.84, 165.8. Anal. Calcd (%) for C9H7FO3: C, 59.35; H, 3.87. Found: C, 59.37; H, 3.86. 4-(4-Chlorophenyl)-1,3-dioxolan-2-one (4l) Yield 87% (518 mg, 2.61 mmol); colorless solid; mp 70–71 °C (lit. mp 68–69 °C). IR (CHCl3): νmax = 770, 829, 1071, 1167, 1384, 1494, 1816 cm–1. 1H NMR (200 MHz, CDCl3): δ = 4.29 (t, J = 8.4 Hz, 1 H), 4.80 (t, J = 8.4 Hz, 1 H), 5.65 (t, J = 7.8 Hz, 1 H), 7.28–7.33 (m, 2 H), 7.36–7.44 (m, 2 H). 13C NMR (50 MHz, CDCl3): δ = 70.9, 77.1, 127.2, 129.4, 134.4, 135.7, 154.3. Anal. Calcd (%) for C9H7ClO3: C, 54.43; H, 3.55. Found: C, 54.37; H, 3.56. 4-(2-Bromophenyl)-1,3-dioxolan-2-one (4m) Yield 96% (700 mg, 2.88 mmol); gum. IR (CHCl3): νmax = 763, 969, 1072, 1125, 1159, 1208, 1473, 1817 cm–1. 1H NMR (200 MHz, CDCl3): δ = 4.24 (dd, J = 6.8, 1.7 Hz, 1 H), 4.99 (t, J = 8.4 Hz, 1 H), 5.94 (t, J = 8.0 Hz, 1 H), 7.28–7.39 (m, 1 H), 7.43–7.62 (m, 3 H). 13C NMR (50 MHz, CDCl3): δ = 70.4, 76.3, 120.1, 126.0, 128.1, 130.4, 132.96, 136.3, 154.3. Anal. Calcd (%) for C9H7BrO3: C, 44.47; H, 2.90. Found: C, 44.45; H, 2.86. 4-[4-(Trifluoromethyl)phenyl]-1,3-dioxolan-2-one (4n) Yield 98% (683 mg, 2.94 mmol); gum. IR (CHCl3): νmax = 771, 844, 1071, 1167, 1264, 1327, 1426, 1822 cm–1. 1H NMR (200 MHz, CDCl3): δ = 4.30 (t, J = 7.8 Hz, 1 H), 4.85 (t, J = 8.4 Hz, 1 H), 5.74 (t, J = 7.9 Hz, 1 H), 7.48 (d, J = 8.0 Hz, 1 H), 7.70–7.74 (d, J = 8.2 Hz, 2 H). 13C NMR (50 MHz, CDCl3): δ = 70.8, 76.8, 126.0, 126.2, 126.3, 126.4, 139.9, 154.2. HRMS (ESI+): m/z calcd for (C10H7F3O3)+ [M + H]+: 233.0426; found: 233.0426. Anal. Calcd (%) for C10H7F3O3: C, 51.74; H, 3.04. Found: C, 51.71; H, 3.06. 4-(2-Nitrophenyl)-1,3-dioxolan-2-one (4o) Yield 79% (496 mg, 2.37 mmol); brown solid; mp 95–96 °C. IR (CHCl3): νmax = 1073, 1167, 1350, 1527, 1819 cm–1. 1H NMR (200 MHz, CDCl3): δ = 4.27 (dd, J = 9.0, 3.3 Hz, 1 H), 5.17 (t, J = 8.9 Hz, 1 H), 6.28 (dd, J = 8.7, 2.7 Hz, 1 H), 7.60–7.68 (m, 1 H), 7.83 (d, J = 4.0 Hz, 2 H), 8.26 (d, J = 8.2 Hz, 1 H). 13C NMR (50 MHz, CDCl3): δ = 71.2, 74.3, 125.6, 126.2, 129.9, 134.1, 135.1, 145.9, 154.2 Anal. Calcd (%) for C9H7NO5: C, 51.68; H, 3.37; N, 6.70. Found: C, 51.71; H, 3.35; N, 6.66. 4-(3-Nitrophenyl)-1,3-dioxolan-2-one (4p) Yield 75% (470 mg, 2.25 mmol); brown solid; mp 97–98 °C. IR (CHCl3): νmax = 1071, 1166, 1349, 1530, 1805 cm–1. 1H NMR (200 MHz, CDCl3): δ = 4.35 (dd, J = 8.7, 1.1 Hz, 1 H), 4.91 (t, J = 8.5 Hz, 1 H), 5.81 (t, J = 7.8 Hz, 1 H), 7.64–7.78 (m, 2 H), 8.24–8.33 (m,2 H). 13C NMR (50 MHz, CDCl3): δ = 70.7, 76.3, 120.9, 124.5, 130.5, 131.4, 138.2, 148.6, 153.8. HRMS (ESI+): m/z calcd for (C9H7NO5)+ [M + Na]+: 232.0221; found: 232.0214. Anal. Calcd (%) for C9H7NO5: C, 51.68; H, 3.37; N, 6.70. Found: C, 51.72; H, 3.34; N, 6.68. 4-{Benzo[d][1,3]dioxol-5-yl}-1,3-dioxolan-2-one (4q) Yield 86% (537 mg, 2.58 mmol); gum. IR (CHCl3): νmax = 1070, 1164, 1251, 1505, 1791 cm–1. 1H NMR (200 MHz, CDCl3): δ = 4.32 (t, J = 8.4 Hz, 1 H), 4.75 (t, J = 8.5 Hz, 1 H), 5.58 (t, J = 8.0 Hz, 1 H), 6.01 (s, 2 H), 6.84 (s, 3 H). 13C NMR (50 MHz, CDCl3): δ = 71.0, 78.0, 101.5, 106.1, 108.6, 120.3, 129.2, 148.5, 148.8, 154.6. Anal. Calcd (%) for C10H8O5: C, 57.70; H, 3.87. Found: C, 57.72; H, 3.84. 4-[2-(Benzyloxy)ethyl]-1,3-dioxolan-2-one (4r) Yield 80% (533 mg, 2.4 mmol); gum. IR (CHCl3): νmax = 1061, 1173, 1364, 1454, 1794 cm–1. 1H NMR (200 MHz, CDCl3): δ = 2.02–2.10 (m, 2 H), 3.58–3.65 (m, 2 H), 4.17 (dd, J = 8.4, 1.0 Hz, 1 H), 4.47–4.52 (m, 3 H), 4.79–4.93 (m, 1 H), 7.29–7.40 (m, 5 H). 13C NMR (50 MHz, CDCl3): δ = 32.0, 33.9, 61.5, 65.3, 69.1, 69.6, 73.1, 73.3, 75.0, 127.5, 127.8, 128.3, 128.4, 137.5, 154.7. Anal. Calcd (%) for C12H14O4: C, 64.85; H, 6.35. Found: C, 64.82; H, 6.31. 4-Phenethyl-1,3-dioxolan-2-one (4s) Yield 77% (444 mg, 2.31 mmol); gum. IR (CHCl3): νmax = 1061, 1165, 1796 cm–1. 1H NMR (200 MHz, CDCl3): δ = 1.94–2.17 (m, 2 H), 2.72–2.91 (m, 2 H), 4.01 (dd, J = 8.3, 1.1 Hz, 1 H), 4.44 (t, J = 8.2 Hz, 1 H), 4.62–4.68 (m, 1 H), 7.15–7.34 (m, 5 H). 13C NMR (50 MHz, CDCl3): δ = 30.8, 35.6, 69.1, 75.8, 126.5, 128.3, 128.7, 139.6, 154.6. Anal. Calcd (%) for C11H12O3: C, 68.74; H, 6.29. Found: C, 68.71; H, 6.26. 4,5-Dimethoxy-2-(2-oxo-1,3-dioxolan-4-yl)benzonitrile (4t) Yield 83% (690.42, 2.49 mmol); gum. IR (CHCl3): νmax = 1064, 1168, 1270, 1516, 1793, 2218 cm–1. 1H NMR (200 MHz, CDCl3): δ = 2.09 (q, J = 7.8 Hz, 1 H), 2.89–2.98 (m, 1 H), 3.89 (s, 3 H), 3.94 (s, 3 H), 4.14 (dd, J = 8.3, 1.6 Hz, 1 H), 4.54 (t, J = 8.2 Hz, 1 H), 4.62–4.73 (m, 1 H), 6.80 (s, 1 H), 7.03 (s, 1 H). 13C NMR (50 MHz, CDCl3): δ = 29.5, 35.0, 56.1, 69.0, 75.6, 103.0, 112.3, 114.2, 118.0, 138.1, 147.9, 152.9, 154.5. HRMS (ESI+): m/z calcd for (C14H15NO5)+ [M + H]+: 278.1023; found: 278.1026. Anal. Calcd (%) for C14H15NO5 C, 60.64; H, 5.45; N, 5.05. Found: C, 60.60; H, 5.40; N, 5.10. tert-Butyl {(S)-1-[(S)-2-Oxo-1,3-dioxolan-4-yl]-2-phenylethyl}carbamate (4u) Yield 79% (728 mg, 2.37 mmol); colorless solid; mp 148–149 °C. IR (CHCl3): νmax = 1061, 1169, 1249, 1366, 1689, 1800 cm–1. 1H NMR (200 MHz, CDCl3): δ = 1.40 (s, 9 H), 2.82–2.89 (m, 2 H), 4.09 (m, 1 H), 4.28–4.44 (m, 2 H), 4.67 (m, 2 H), 7.22–7.33 (m, 5 H). 13C NMR (50 MHz, CDCl3): δ = 28.2, 38.5, 52.8, 66.5, 76.1, 80.4, 127.1, 128.88, 129.2, 136.4, 154.6, 155.9. Anal. Calcd (%) for C16H21NO5: C, 62.53; H, 6.89; N, 4.56. Found: C, 62.57; H, 6.91; N, 4.60. 4-[4-(Methylthio)phenyl]-1,3-dioxolan-2-one (4v) Yield 90% (573 mg, 2.73 mmol); yellow solid; mp 55–57 °C. IR (CHCl3): νmax = 817, 895, 1062, 1173, 1384, 1514, 1767 cm–1. 1H NMR (200 MHz, CDCl3): δ = 2.49 (s, 3 H), 4.30 (t, J = 8.1 Hz, 1 H), 4.76 (t, J = 8.2 Hz, 1 H), 5.61 (t, J = 8.0 Hz, 1 H), 7.27 (s, 4 H). 13C NMR (100 MHz, CDCl3): δ = 15.0, 70.7, 77.5, 125.8, 131.9, 140.7, 154.5. Anal. Calcd (%) for C10H10SO3: C, 57.13; H, 4.79. Found: C, 57.17; H, 4.86. HRMS (ESI+): m/z calcd for (C10H10O3S)+ [M + H]+: 211.0429; found: 211.0441. 2-Iodo-1-phenylethan-1-ol (3a) Gum. IR (CHCl3): νmax = 699, 1054, 1174, 1452, 3404 cm–1. 1H NMR (200 MHz, CDCl3): δ = 2.44 (br s, 1 H), 3.33–3.52 (m, 2 H), 4.80–4.84 (m, 1 H), 7.31–7.38 (m, 5 H). 13C NMR (50 MHz, CDCl3): δ = 1502, 74.0, 125.7, 128.3, 128.6, 141.1. Anal. Calcd (%) for C8H9IO: C, 38.74; H, 3.66. Found: C, 38.70; H, 3.63.

  • References and Notes

    • 1a Sakakura T, Choi JC, Yasuda H. Chem. Rev. 2007; 107: 2365
    • 1b Braunstein P, Matt D, Nobel D. Chem. Rev. 1988; 88: 747
    • 1c Behr A. Angew. Chem., Int. Ed. Engl. 1988; 27: 661
    • 1d Jessop PG, Joo F, Tai CC. Coord. Chem. Rev. 2004; 248: 2425
    • 1e Darensbourg DJ. Chem. Rev. 2007; 107: 2388
    • 1f Eghbali N, Li CJ. Green Chem. 2007; 9: 213
    • 1g Riduan SN, Zhang Y. Dalton Trans. 2010; 39: 3347
    • 1h Sakakura T, Kohon K. Chem. Commun. 2009; 1312
    • 1i Aher RD. Gade M. H. Reddy R. S, Sudalai A. Indian J. Chem., Sect. A: Inorg., Bio-inorg., Phys., Theor. Anal. Chem. 2012; 51: 1325
    • 1j Olah GA. Angew. Chem. Int. Ed. 2005; 44: 2636
    • 2a Zevenhoven R, Eloneva S, Teir S. Catal. Today 2006; 115: 73
    • 2b Aresta M, Dibenedetto A, Tommasi I. Energy Fuels 2001; 15: 269
    • 2c Tundo P, Selva M. Acc. Chem. Res. 2002; 35: 706
    • 2d Aida T, Inoue S. Acc. Chem. Res. 1998; 29: 39
    • 2e Riduan SN, Zhang Y, Ying JY. Angew. Chem. Int. Ed. 2009; 48: 3322
    • 2f Gu L, Zhang Y. J. Am. Chem. Soc. 2010; 132: 914
    • 3a Schaffner B, Schaffner F, Verevkin SP, Borner A. Chem. Rev. 2010; 110: 4554
    • 3b Shaikh AA. G, Sivaram S. Chem. Rev. 1996; 96: 951
    • 3c Clements JH. Ind. Eng. Chem. Res. 2003; 42: 663
    • 4a Davis RA, Andjic V, Kotiw M, Shivas RG. Phytochemistry 2005; 66: 2771
    • 4b Liu Z, Jensen PR, Fenical W. Phytochemistry 2003; 64: 571
    • 5a Ream BC. US 4,877,886, 1989
    • 5b McMullen CH, Nelson JR, Ream BC, Sims JA. J. US 4,314,945, 1982
    • 5c Peppel WJ. J. Ind. Eng. Chem. 1958; 50: 767
    • 5d Chatelet B, Joucla L, Dutasta J.-P, Martinez A, Szeto KC, Dufaud V. J. Am. Chem. Soc. 2013; 135: 5348
    • 6a Lu X.-B, He R, Bai C.-X. J. Mol. Catal. A: Chem. 2002; 186: 1
    • 6b Lu X.-B, Liang B, Zhang Y.-J, Tian Y.-Z, Wang Y.-M, Bai C.-X, Wang H, Zhang R. J. Am. Chem. Soc. 2004; 126: 3732
    • 6c Melendez J, North M, Pasquale R. Eur. J. Inorg. Chem. 2007; 3323
    • 6d Melendez J, North M, Villuendas P. Chem. Commun. 2009; 2577
    • 6e North M, Pasquale R. Angew. Chem. Int. Ed. 2009; 48: 2946
    • 6f Paddock RL, Nguyen ST. Chem. Commun. 2004; 1622
    • 6g Darensbourg DJ, Bottarelli P, Andreatta JR. Macromolecules 2007; 40: 7727
    • 6h Darensbourg DJ, Fang CC, Rodgers JL. Organometallics 2004; 23: 924
    • 6i Lu XB, Pan YZ, Ji DF, He R. Chin. Chem. Lett. 2000; 11: 589
    • 7a Wang JL, Wang JQ, He LN, Dou XY, Wu F. Green Chem. 2008; 10: 1218
    • 7b Bai DS, Jing HW. Green Chem. 2010; 12: 39
  • 8 Satoshi K, Shunsuke Y, Yuudai S, Wataru Y, Hau MC, Kosuke F, Kohei S, Izumi I, Taketo I, Tohru Y. Bull. Chem. Soc. Jpn. 2011; 84: 698
  • 9 Minakata S, Sasaki I, Ide T. Angew. Chem. Int. Ed. 2010; 49: 1309
    • 10a Du Y, Kong DL, Wang HY, Cai F, Tian JS, Wang JQ, He LN. J. Mol. Catal. A: Chem. 2005; 241: 233
    • 10b Du Y, He LN. Catal. Commun. 2008; 9: 1754
  • 11 Peng Y, Xueqin T, Huanwang J, Shuhui D, Xiaoxuan W, Zhongli L. J. Org. Chem. 2011; 76: 2459
    • 12a Corey EJ, Chaykovsky M. J. Am. Chem. Soc. 1965; 87: 1353
    • 12b Melting point was found to be in agreement with the reported value.
    • 13a Ylide generation failed with NaOH.
    • 13b Diol was obtained in 48% yield with KOH.
    • 13c Trace amount (5%) of epoxide was obtained using KOt-Bu as base.
  • 14 Dimethylsulfonium methylide was used instead of dimethyloxosulfonium methylide
  • 15 North M, Pasquale R. Angew. Chem. Int. Ed. 2009; 48: 2946
  • 16 General Description Solvents were purified and dried by standard procedures before use; PE of boiling range 60–80 °C was used. Melting points are uncorrected and recorded on a Buchi B-542 instrument. 1H NMR and 13C NMR spectra were recorded on Bruker AC-200 spectrometer unless mentioned otherwise. Elemental analysis was carried out on a Carlo Erba CHNS-O analyzer. Infrared spectra were recorded on Shimadzu FTIR-8400 spectrometer and absorption is expressed in cm–1. HRMS data for new compounds were recorded on a Thermo Scientific Q-Exactive, Accela 1250 pump. Purification was done using column chromatography (230–400 mesh). General Experimental Procedure for the Preparation of Cyclic Carbonates 4a–v NaH (0.132 g, 3.3 mmol; previously washed with anhydrous PE to remove oil) was taken in an oven-dried three-necked flask, followed by addition of anhydrous DMSO (10 mL) through a septum to it, and the whole slurry was stirred at 25 °C under N2 atmosphere. Solid Me3SOI (0.726 g, 3.3 mmol) was added to the slurry with stirring over a period of 5 min via a solid addition funnel until it becomes a homogeneous solution. A solution of aldehyde 1av (3 mmol), dissolved in anhydrous THF (10 mL), was added dropwise to the reaction mixture. After 1 h, CO2 (1 atm) was then bubbled slowly via a needle into the reaction mixture, (after ascertaining that aldehyde was completely converted into epoxide, monitored by TLC) at 40 °C, for 6 h. Water (10 mL) was added to quench the reaction. It was then extracted with EtOAc (3 × 20 mL); the organic layer was washed with brine and dried over anhydrous Na2SO4 and the solvent concentrated, product purified by silica gel column chromatography (100–200 mesh) using PE and EtOAc (70:30) as eluent to afford pure cyclic carbonates 4av. 4-Phenyl-1,3-dioxolan-2-one (4a) Yield 94% (463 mg, 2.82 mmol); colorless solid; mp 53–54 °C (lit. mp 51–53 °C). IR (CHCl3): νmax = 769, 1068, 1168, 1328, 1458, 1812 cm–1. 1H NMR (200 MHz, CDCl3): δ = 4.29 (t, J = 7.9 Hz, 1 H), 4.77 (t, J = 7.9 Hz, 1 H), 5.64 (t, J = 7.9 Hz, 1 H), 7.32–7.42 (m, 5 H). 13C NMR (50 MHz, CDCl3): δ = 70.9, 77.8, 125.7, 129.0, 129.4, 135.8, 154.6. Anal. Calcd (%) for C9H8O3: C, 65.85; H, 4.91. Found: C, 65.84; H, 4.90. 4-Methyl-1,3-dioxolan-2-one (4b) Yield 40% (122.5 mg, 1.2 mmol); colorless oil; IR (CHCl3): νmax = 711, 776, 1051, 1120, 1183, 1354, 1389, 1793 cm–1. 1H NMR (200 MHz, CDCl3): δ = 1.49 (d, J = 6.1 Hz, 3 H), 4.02 (dd, J = 8.2, 1.0 Hz, 1 H), 4.55 (t, J = 8.0 Hz, 1 H), 4.77–4.94 (m, 1 H). 13C NMR (100 MHz, CDCl3): δ = 19.0, 70.4, 73.4, 154.8. Anal. Calcd (%) for C4H6O3: C, 47.06; H, 5.92. Found: C, 47.04; H, 5.91. 4-Ethyl-1,3-dioxolan-2-one (4c) Yield 65% (226.4 mg, 1.95 mmol); colorless oil. IR (CHCl3): νmax = 1060, 1177, 1377, 1797 cm–1. 1H NMR (200 MHz, CDCl3): δ = 1.03 (t, J = 7.4 Hz, 3 H), 1.72–1.87 (m, 2 H), 4.1 (dd, J = 8.2, 1.5 Hz, 1 H), 4.55 (t, J = 8.2 Hz, 1 H), 4.63–4.73 (m, 1 H). 13C NMR (50 MHz, CDCl3): δ = 7.9, 26.2, 68.5, 77.6, 154.6. Anal. Calcd (%) for C5H8O3: C, 51.72; H, 6.94. Found: C, 51.75; H, 6.91. 4-Isopropyl-1,3-dioxolan-2-one (4d) Yield 73% (285 mg, 2.19 mmol); colorless oil. IR (CHCl3): νmax = 1075, 1175, 1392, 1789 cm–1. 1H NMR (200 MHz, CDCl3): δ = 0.95 (d, J = 6.8 Hz, 3 H), 1.04 (d, J = 6.5 Hz, 3 H), 1.90–2.00 (m, 1 H), 4.12–4.18 (m, 1 H), 4.37–4.53 (m, 2 H). 13C NMR (50 MHz, CDCl3): δ = 16.4, 16.8, 31.4, 67.2, 80.9, 154.6. HRMS (ESI+): m/z = calcd for (C6H10O3)+ [M + H]+: 131.0709; found: 131.0708. Anal. Calcd (%) for C6H10O3: C, 55.37; H, 7.75. Found: C, 55.40; H, 7.71. 4-Butyl-1,3-dioxolan-2-one (4e) Yield 89% (384.9 mg, 2.6 mmol); gum. IR (CHCl3): νmax = 1066, 1173, 1797 cm–1. 1H NMR (200 MHz, CDCl3): δ = 0.88–0.95 (m, 3 H), 1.23–1.40 (m, 3 H), 1.68–1.80 (m, 3 H), 4.05 (dd, J = 8.2, 1.0 Hz, 1 H), 4.51 (t, J = 8.2 Hz, 1 H), 4.62–4.76 (m, 1 H). 13C NMR (50 MHz, CDCl3): δ = 13.8, 22.2, 26.4, 33.6, 69.3, 76.9, 154.9. Anal. Calcd (%) for C7H12O3: C, 58.32; H, 8.39. Found: C, 58.34; H, 8.38%. 4-Hexyl-1,3-dioxolan-2-one (4f) Yield 94% (486 mg, 2.82 mmol); gum. IR (CHCl3): νmax = 772, 1065, 1170, 1802 cm–1. 1H NMR (200 MHz, CDCl3): δ = 0.86–0.93 (m, 3 H), 1.30–1.49 (m, 8 H), 1.69–1.80 (m, 2 H), 4.06 (t, J = 7.2 Hz, 1 H), 4.51 (t, J = 8.0 Hz, 1 H), 4.62–4.76 (m, 1 H). 13C NMR (50 MHz, CDCl3): δ = 13.9, 22.4, 24.3, 28.7, 31.4, 33.8, 69.2, 76.8, 154.8. Anal. Calcd (%) for C9H16O3: C, 62.77; H, 9.36. Found: C, 62.73; H, 9.40. 4-Vinyl-1,3-dioxolan-2-one (4g) Yield 65% (222.5 mg, 1.95 mmol); yellow oil. IR (CHCl3): νmax = 772, 991, 1060, 1168, 1385, 1510, 1805 cm–1. 1H NMR (200 MHz, CDCl3): δ = 4.17 (t, J = 7.8 Hz, 1 H), 4.61 (t, J = 8.4 Hz, 1 H), 5.12 (dd, J = 14.9, 7.5 Hz, 1 H), 5.48 (t, J = 16.5 Hz, 2 H), 5.83–6.0 (m, 1 H). 13C NMR (50 MHz, CDCl3): δ = 68.8, 76.8, 120.9, 132.2, 154.2. HRMS (ESI+): m/z calcd for (C5H6O3)+ [M + H]+: 115.0396; found: 115.0392; Anal. Calcd (%) for C5H6O3: C, 52.63; H, 5.30. Found: C, 52.61; H, 5.32. (E)-4-Styryl-1,3-dioxolan-2-one (4h) Yield 98% (559 mg, 2.94 mmol); colorless solid; mp 115–116 °C. IR (CHCl3): νmax = 1049, 1070, 1168, 1648, 1800 cm–1. 1H NMR (200 MHz, CDCl3): δ = 4.23 (t, J = 8.0 Hz, 1 H), 4.64 (t, J = 8.2 Hz, 1 H), 5.26 (q, J = 7.9 Hz, 1 H), 6.15 (dd, J = 15.7, 7.7 Hz, 1 H), 6.73 (d, J = 15.7 Hz, 1 H), 7.26–7.40 (m, 5 H). 13C NMR (50 MHz, CDCl3): δ = 69.2, 77.6, 122.4, 126.9, 128.8, 129.0, 134.8, 136.6, 154.4. HRMS (ESI+): m/z calcd for (C11H10O3)+ [M + Na]+: 213.0527; found: 213.0522. Anal. Calcd (%) for C11H10O3: C, 69.46; H, 5.30. Found: C, 69.41; H, 5.33. 4-(2-Methoxyphenyl)-1,3-dioxolan-2-one (4i) Yield 85% (495 mg, 2.55 mmol); gum. IR (CHCl3): νmax = 757, 1076, 1166, 1249, 1494, 1812 cm–1. 1H NMR (200 MHz, CDCl3): δ = 3.86 (s, 3 H), 4.25 (dd, J = 8.4, 1.1 Hz, 1 H), 4.82 (t, J = 8.4 Hz, 1 H), 5.81 (t, J = 8.0 Hz, 1 H), 6.90–7.04 (m, 2 H), 7.32–7.38 (m, 2 H). 13C NMR (50 MHz, CDCl3): δ = 55.4, 70.5, 74.7, 110.5, 120.9, 124.9, 126.1, 130.3, 154.9, 156.1. Anal. Calcd (%) for C10H10O4: C, 61.85; H, 5.19. Found: C, 61.79; H, 5.14. 4-(3,4,5-Trimethoxyphenyl)-1,3-dioxolan-2-one (4j) Yield 90% (686 mg, 2.7 mmol); brown solid; mp 133–134 °C. IR (CHCl3): νmax = 1068, 1125, 1243, 1510, 1796 cm–1. 1H NMR (200 MHz, CDCl3): δ = 3.84 (s, 3 H), 3.88 (s, 6 H), 4.31 (t, J = 8.3 Hz, 1 H), 4.78 (t, J = 8.4 Hz, 1 H), 5.60 (t, J = 7.9 Hz, 1 H), 6.54 (s, 2 H). 13C NMR (50 MHz, CDCl3): δ = 56.1, 60.7, 71.1, 78.0, 102.6, 131.2, 138.8, 153.8, 154.5. HRMS (ESI+): m/z calcd for (C12H14O6)+ [M + H]+: 255.0869; found: 255.0855. Anal. Calcd (%) for C12H14O6: C, 56.69; H, 5.55. Found: C, 56.62; H, 5.50. 4-(4-Fluorophenyl)-1,3-dioxolan-2-one (4k) Yield 90% (492 mg, 2.7 mmol); colorless solid; mp 91–92 °C. IR (CHCl3): νmax = 773, 840, 1069, 1161, 1210, 1385, 1514, 1818 cm–1. 1H NMR (200 MHz, CDCl3): δ = 4.31 (t, J = 8.2 Hz, 1 H), 4.80 (t, J = 8.3 Hz, 1 H), 5.66 (t, J = 8.0 Hz, 1 H), 7.08–7.19 (m, 2 H), 7.32–7.40 (m, 2 H). 13C NMR (50 MHz, CDCl3): δ = 71.0, 77.3, 116, 116.5, 127.9, 128.0, 131.6, 154.4, 160.84, 165.8. Anal. Calcd (%) for C9H7FO3: C, 59.35; H, 3.87. Found: C, 59.37; H, 3.86. 4-(4-Chlorophenyl)-1,3-dioxolan-2-one (4l) Yield 87% (518 mg, 2.61 mmol); colorless solid; mp 70–71 °C (lit. mp 68–69 °C). IR (CHCl3): νmax = 770, 829, 1071, 1167, 1384, 1494, 1816 cm–1. 1H NMR (200 MHz, CDCl3): δ = 4.29 (t, J = 8.4 Hz, 1 H), 4.80 (t, J = 8.4 Hz, 1 H), 5.65 (t, J = 7.8 Hz, 1 H), 7.28–7.33 (m, 2 H), 7.36–7.44 (m, 2 H). 13C NMR (50 MHz, CDCl3): δ = 70.9, 77.1, 127.2, 129.4, 134.4, 135.7, 154.3. Anal. Calcd (%) for C9H7ClO3: C, 54.43; H, 3.55. Found: C, 54.37; H, 3.56. 4-(2-Bromophenyl)-1,3-dioxolan-2-one (4m) Yield 96% (700 mg, 2.88 mmol); gum. IR (CHCl3): νmax = 763, 969, 1072, 1125, 1159, 1208, 1473, 1817 cm–1. 1H NMR (200 MHz, CDCl3): δ = 4.24 (dd, J = 6.8, 1.7 Hz, 1 H), 4.99 (t, J = 8.4 Hz, 1 H), 5.94 (t, J = 8.0 Hz, 1 H), 7.28–7.39 (m, 1 H), 7.43–7.62 (m, 3 H). 13C NMR (50 MHz, CDCl3): δ = 70.4, 76.3, 120.1, 126.0, 128.1, 130.4, 132.96, 136.3, 154.3. Anal. Calcd (%) for C9H7BrO3: C, 44.47; H, 2.90. Found: C, 44.45; H, 2.86. 4-[4-(Trifluoromethyl)phenyl]-1,3-dioxolan-2-one (4n) Yield 98% (683 mg, 2.94 mmol); gum. IR (CHCl3): νmax = 771, 844, 1071, 1167, 1264, 1327, 1426, 1822 cm–1. 1H NMR (200 MHz, CDCl3): δ = 4.30 (t, J = 7.8 Hz, 1 H), 4.85 (t, J = 8.4 Hz, 1 H), 5.74 (t, J = 7.9 Hz, 1 H), 7.48 (d, J = 8.0 Hz, 1 H), 7.70–7.74 (d, J = 8.2 Hz, 2 H). 13C NMR (50 MHz, CDCl3): δ = 70.8, 76.8, 126.0, 126.2, 126.3, 126.4, 139.9, 154.2. HRMS (ESI+): m/z calcd for (C10H7F3O3)+ [M + H]+: 233.0426; found: 233.0426. Anal. Calcd (%) for C10H7F3O3: C, 51.74; H, 3.04. Found: C, 51.71; H, 3.06. 4-(2-Nitrophenyl)-1,3-dioxolan-2-one (4o) Yield 79% (496 mg, 2.37 mmol); brown solid; mp 95–96 °C. IR (CHCl3): νmax = 1073, 1167, 1350, 1527, 1819 cm–1. 1H NMR (200 MHz, CDCl3): δ = 4.27 (dd, J = 9.0, 3.3 Hz, 1 H), 5.17 (t, J = 8.9 Hz, 1 H), 6.28 (dd, J = 8.7, 2.7 Hz, 1 H), 7.60–7.68 (m, 1 H), 7.83 (d, J = 4.0 Hz, 2 H), 8.26 (d, J = 8.2 Hz, 1 H). 13C NMR (50 MHz, CDCl3): δ = 71.2, 74.3, 125.6, 126.2, 129.9, 134.1, 135.1, 145.9, 154.2 Anal. Calcd (%) for C9H7NO5: C, 51.68; H, 3.37; N, 6.70. Found: C, 51.71; H, 3.35; N, 6.66. 4-(3-Nitrophenyl)-1,3-dioxolan-2-one (4p) Yield 75% (470 mg, 2.25 mmol); brown solid; mp 97–98 °C. IR (CHCl3): νmax = 1071, 1166, 1349, 1530, 1805 cm–1. 1H NMR (200 MHz, CDCl3): δ = 4.35 (dd, J = 8.7, 1.1 Hz, 1 H), 4.91 (t, J = 8.5 Hz, 1 H), 5.81 (t, J = 7.8 Hz, 1 H), 7.64–7.78 (m, 2 H), 8.24–8.33 (m,2 H). 13C NMR (50 MHz, CDCl3): δ = 70.7, 76.3, 120.9, 124.5, 130.5, 131.4, 138.2, 148.6, 153.8. HRMS (ESI+): m/z calcd for (C9H7NO5)+ [M + Na]+: 232.0221; found: 232.0214. Anal. Calcd (%) for C9H7NO5: C, 51.68; H, 3.37; N, 6.70. Found: C, 51.72; H, 3.34; N, 6.68. 4-{Benzo[d][1,3]dioxol-5-yl}-1,3-dioxolan-2-one (4q) Yield 86% (537 mg, 2.58 mmol); gum. IR (CHCl3): νmax = 1070, 1164, 1251, 1505, 1791 cm–1. 1H NMR (200 MHz, CDCl3): δ = 4.32 (t, J = 8.4 Hz, 1 H), 4.75 (t, J = 8.5 Hz, 1 H), 5.58 (t, J = 8.0 Hz, 1 H), 6.01 (s, 2 H), 6.84 (s, 3 H). 13C NMR (50 MHz, CDCl3): δ = 71.0, 78.0, 101.5, 106.1, 108.6, 120.3, 129.2, 148.5, 148.8, 154.6. Anal. Calcd (%) for C10H8O5: C, 57.70; H, 3.87. Found: C, 57.72; H, 3.84. 4-[2-(Benzyloxy)ethyl]-1,3-dioxolan-2-one (4r) Yield 80% (533 mg, 2.4 mmol); gum. IR (CHCl3): νmax = 1061, 1173, 1364, 1454, 1794 cm–1. 1H NMR (200 MHz, CDCl3): δ = 2.02–2.10 (m, 2 H), 3.58–3.65 (m, 2 H), 4.17 (dd, J = 8.4, 1.0 Hz, 1 H), 4.47–4.52 (m, 3 H), 4.79–4.93 (m, 1 H), 7.29–7.40 (m, 5 H). 13C NMR (50 MHz, CDCl3): δ = 32.0, 33.9, 61.5, 65.3, 69.1, 69.6, 73.1, 73.3, 75.0, 127.5, 127.8, 128.3, 128.4, 137.5, 154.7. Anal. Calcd (%) for C12H14O4: C, 64.85; H, 6.35. Found: C, 64.82; H, 6.31. 4-Phenethyl-1,3-dioxolan-2-one (4s) Yield 77% (444 mg, 2.31 mmol); gum. IR (CHCl3): νmax = 1061, 1165, 1796 cm–1. 1H NMR (200 MHz, CDCl3): δ = 1.94–2.17 (m, 2 H), 2.72–2.91 (m, 2 H), 4.01 (dd, J = 8.3, 1.1 Hz, 1 H), 4.44 (t, J = 8.2 Hz, 1 H), 4.62–4.68 (m, 1 H), 7.15–7.34 (m, 5 H). 13C NMR (50 MHz, CDCl3): δ = 30.8, 35.6, 69.1, 75.8, 126.5, 128.3, 128.7, 139.6, 154.6. Anal. Calcd (%) for C11H12O3: C, 68.74; H, 6.29. Found: C, 68.71; H, 6.26. 4,5-Dimethoxy-2-(2-oxo-1,3-dioxolan-4-yl)benzonitrile (4t) Yield 83% (690.42, 2.49 mmol); gum. IR (CHCl3): νmax = 1064, 1168, 1270, 1516, 1793, 2218 cm–1. 1H NMR (200 MHz, CDCl3): δ = 2.09 (q, J = 7.8 Hz, 1 H), 2.89–2.98 (m, 1 H), 3.89 (s, 3 H), 3.94 (s, 3 H), 4.14 (dd, J = 8.3, 1.6 Hz, 1 H), 4.54 (t, J = 8.2 Hz, 1 H), 4.62–4.73 (m, 1 H), 6.80 (s, 1 H), 7.03 (s, 1 H). 13C NMR (50 MHz, CDCl3): δ = 29.5, 35.0, 56.1, 69.0, 75.6, 103.0, 112.3, 114.2, 118.0, 138.1, 147.9, 152.9, 154.5. HRMS (ESI+): m/z calcd for (C14H15NO5)+ [M + H]+: 278.1023; found: 278.1026. Anal. Calcd (%) for C14H15NO5 C, 60.64; H, 5.45; N, 5.05. Found: C, 60.60; H, 5.40; N, 5.10. tert-Butyl {(S)-1-[(S)-2-Oxo-1,3-dioxolan-4-yl]-2-phenylethyl}carbamate (4u) Yield 79% (728 mg, 2.37 mmol); colorless solid; mp 148–149 °C. IR (CHCl3): νmax = 1061, 1169, 1249, 1366, 1689, 1800 cm–1. 1H NMR (200 MHz, CDCl3): δ = 1.40 (s, 9 H), 2.82–2.89 (m, 2 H), 4.09 (m, 1 H), 4.28–4.44 (m, 2 H), 4.67 (m, 2 H), 7.22–7.33 (m, 5 H). 13C NMR (50 MHz, CDCl3): δ = 28.2, 38.5, 52.8, 66.5, 76.1, 80.4, 127.1, 128.88, 129.2, 136.4, 154.6, 155.9. Anal. Calcd (%) for C16H21NO5: C, 62.53; H, 6.89; N, 4.56. Found: C, 62.57; H, 6.91; N, 4.60. 4-[4-(Methylthio)phenyl]-1,3-dioxolan-2-one (4v) Yield 90% (573 mg, 2.73 mmol); yellow solid; mp 55–57 °C. IR (CHCl3): νmax = 817, 895, 1062, 1173, 1384, 1514, 1767 cm–1. 1H NMR (200 MHz, CDCl3): δ = 2.49 (s, 3 H), 4.30 (t, J = 8.1 Hz, 1 H), 4.76 (t, J = 8.2 Hz, 1 H), 5.61 (t, J = 8.0 Hz, 1 H), 7.27 (s, 4 H). 13C NMR (100 MHz, CDCl3): δ = 15.0, 70.7, 77.5, 125.8, 131.9, 140.7, 154.5. Anal. Calcd (%) for C10H10SO3: C, 57.13; H, 4.79. Found: C, 57.17; H, 4.86. HRMS (ESI+): m/z calcd for (C10H10O3S)+ [M + H]+: 211.0429; found: 211.0441. 2-Iodo-1-phenylethan-1-ol (3a) Gum. IR (CHCl3): νmax = 699, 1054, 1174, 1452, 3404 cm–1. 1H NMR (200 MHz, CDCl3): δ = 2.44 (br s, 1 H), 3.33–3.52 (m, 2 H), 4.80–4.84 (m, 1 H), 7.31–7.38 (m, 5 H). 13C NMR (50 MHz, CDCl3): δ = 1502, 74.0, 125.7, 128.3, 128.6, 141.1. Anal. Calcd (%) for C8H9IO: C, 38.74; H, 3.66. Found: C, 38.70; H, 3.63.

Zoom Image
Scheme 1 Synthesis of cyclic carbonates from aldehydes, sulfur ylide, and CO2
Zoom Image
Scheme 2 Pathway for the formation of cyclic carbonates from aldehydes, sulfur ylide, and CO2