Synthesis 2014; 46(07): 923-932
DOI: 10.1055/s-0033-1340617
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of C2-Methylene Glycitols from 1,2-Cyclopropanated Sugars: En Route to Iminosugar Analogues

Kalapati Seshadri
School of Chemistry, University of Hyderabad, Hyderabad 500 046, India   Fax: +91(40)23012460   Email: p_ramu_sridhar@uohyd.ac.in
,
Perali Ramu Sridhar*
School of Chemistry, University of Hyderabad, Hyderabad 500 046, India   Fax: +91(40)23012460   Email: p_ramu_sridhar@uohyd.ac.in
› Author Affiliations
Further Information

Publication History

Received: 05 November 2013

Accepted after revision: 19 December 2013

Publication Date:
30 January 2014 (online)


Abstract

C2-Methylene glycitols were synthesized in three steps by halonium ion mediated solvolytic ring opening of 1,2-cyclopropanated sugars, dehydrohalogenation using potassium carbonate in aqueous acetonitrile, and reduction with sodium borohydride. The generality of the methodology was evaluated by applying it to a series of 1,2-cyclopropanated pyranoses as well as furanoses to give the corresponding C2-methylene glycitol derivatives. Furthermore, the obtained glycitols were converted into 1-deoxy-C2-methylene iminosugar derivatives.

Supporting Information

 
  • References

    • 1a Nagaraj P, Ganesan M, Ramesh NG. Tetrahedron 2011; 67: 769
    • 1b Gupta P, Vankar YD. Eur. J. Org. Chem. 2009; 1925
    • 1c Reddy YS, Kancharla PK, Roy R, Vankar YD. Org. Biomol. Chem. 2012; 10: 2760
  • 2 Bols M. Acc. Chem. Res. 1998; 31: 1
    • 3a Lillelund VH, Jensen HH, Liang X, Bols M. Chem. Rev. 2002; 102: 515
    • 3b Compain P, Martin OR. Iminosugars: From Synthesis to Therapeutic Applications . John Wiley & Sons; Chichester: 2007
  • 4 Bischofberger K, Brink AJ, de Villiers OG, Hall RH, Jordaan A. J. Chem. Soc., Perkin Trans. 1 1977; 1472
  • 5 See the Supporting Information.
    • 6a Takenuki K, Matsuda A, Ueda T, Sasaki T, Fujii A, Yamagami K. J. Med. Chem. 1988; 31: 1063
    • 6b Ueda T, Matsuda A, Yoshimura Y, Takenuki K. Nucleosides, Nucleotides Nucleic Acids 1989; 8: 743
    • 6c Matsuda A, Takenuki K, Tanaka M, Sasaki T, Ueda T. J. Med. Chem. 1991; 34: 812
    • 6d Agelis G, Tzioumaki N, Botić T, Cencič A, Komiotis D. Bioorg. Med. Chem. 2007; 15: 5448
    • 6e Pontikis R, Wolf J, Monneret C, Florent J.-C. Tetrahedron Lett. 1995; 36: 3523
    • 7a Rosenthal A, Sprinzl M. Can. J. Chem. 1970; 48: 3253
    • 7b Samano V, Robis MJ. Synthesis 1991; 283
    • 7c Ali MH, Collins PM, Overend WG. Carbohydr. Res. 1990; 205: 428
    • 7d Hansen A, Tagmose TM, Bols M. Tetrahedron 1997; 53: 697
    • 8a Booma C, Balasubramanian KK. J. Chem. Soc., Chem. Commun. 1993; 1394
    • 8b Gupta A, Vankar YD. Tetrahedron 2000; 56: 8525
    • 8c Ghosh R, Chakraborty A, Maiti DK, Puranik VG. Tetrahedron Lett. 2005; 46: 8047
  • 9 Kashyap S, Vidadala SR, Hotha S. Tetrahedron Lett. 2007; 48: 8960
    • 10a Pandey G, Bharadwaj KC, Khan MI, Shashidhara KH, Puranik VG. Org. Biomol. Chem. 2008; 6: 2587
    • 10b Pandey G, Kapur M, Khan MI, Gaikwad SM. Org. Biomol. Chem. 2003; 1: 3321
    • 10c Pandey G, Kapur M. Org. Lett. 2002; 4: 3883
  • 11 Pandey G, Kapur M. Synthesis 2001; 1263
  • 12 Pandey G, Kapur M. Tetrahedron Lett. 2000; 41: 8821
    • 13a Sridhar PR, Kumar PV, Seshadri K, Satyavathi R. Chem. Eur. J. 2009; 15: 7526
    • 13b Sridhar PR, Seshadri K, Reddy GM. Chem. Commun. 2012; 48: 756
    • 13c Sridhar PR, Seshadri K. Tetrahedron 2012; 68: 3725
    • 14a Ramana CV, Murali R, Nagarajan M. J. Org. Chem. 1997; 62: 7694
    • 14b Sridhar PR, Ashalu KC, Chandrasekaran S. Org. Lett. 2004; 6: 1777
  • 15 Swamy KC. K, Kumar NN. B, Balaraman E, Kumar KV. P. P. Chem. Rev. 2009; 109: 2551