Synthesis 2015; 47(11): 1633-1642
DOI: 10.1055/s-0034-1380414
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of 4-Alkylidene-Substituted 1,2,3,4-Tetrahydroisoquinolines via Palladium-Catalyzed Carbopalladation/C–H Activation of 2-Bromobenzyl-N-propargylamines

Kanagaraj Naveen
Organic Chemistry Division, CSIR-Central Leather Research Institute, Adyar, Chennai-600 020, India   Email: ptperumal@gmail.com
,
Avanashiappan Nandakumar
Organic Chemistry Division, CSIR-Central Leather Research Institute, Adyar, Chennai-600 020, India   Email: ptperumal@gmail.com
,
Paramasivan Thirumalai Perumal*
Organic Chemistry Division, CSIR-Central Leather Research Institute, Adyar, Chennai-600 020, India   Email: ptperumal@gmail.com
› Author Affiliations
Further Information

Publication History

Received: 24 November 2014

Accepted after revision: 12 February 2015

Publication Date:
18 March 2015 (online)


Abstract

Tetrasubstituted alkene-based 1,2,3,4-tetrahydroisoquinolines are synthesized via the formation of a cyclic carbopalladation complex followed by C–H bond activation of the sp2 carbon in arenes. This domino reaction proceeds with good selectivity and provides good yields of the products. The requisite starting materials are synthesized by copper(I) iodide catalyzed A3-coupling reactions.

Supporting Information

 
  • References

    • 1a Tietze LF. Chem. Rev. 1996; 96: 115
    • 1b Zeni G, Larock RC. Chem. Rev. 2006; 106: 4644
    • 1c Chernyak D, Gevorgyan V. Org. Lett. 2010; 12: 5558
    • 1d Yamamoto Y. Chem. Soc. Rev. 2014; 43: 1575
    • 2a Negishi E.-i, Copéret C, Ma S, Liou S.-Y, Liu F. Chem. Rev. 1996; 96: 365
    • 2b Ma S, Xu B. J. Org. Chem. 1998; 63: 9156
    • 2c Rivera-Fuentes P, von Wantoch Rekowski M, Schweizer WB, Gisselbrecht J.-P, Boudon C, Diederich F. Org. Lett. 2012; 14: 4066
    • 2d Chinchilla R, Najera C. Chem. Rev. 2014; 114: 1783
    • 2e Beccalli EM, Broggini G, Gazzola S, Mazza A. Org. Biomol. Chem. 2014; 12: 6767
    • 3a Grigg R, Loganathan V, Sridharan V. Tetrahedron Lett. 1996; 37: 3399
    • 3b Ohno H, Yamamoto M, Iuchi M, Tanaka T. Angew. Chem. Int. Ed. 2005; 44: 5103 ; Angew. Chem. 2005, 117, 5233
    • 3c Yu JQ, Giri R, Chen X. Org. Biomol. Chem. 2006; 4: 4041
    • 3d Wencel-Delord J, Droge T, Liu F, Glorius F. Chem. Soc. Rev. 2011; 40: 4740
    • 3e Ohno H, Yamamoto M, Iuchi M, Fujii N, Tanaka T. Synthesis 2011; 2567
    • 3f Zou T, Zhang X.-G, Li J.-H, Deng C.-L, Tang R.-Y. Adv. Synth. Catal. 2012; 354: 889
    • 3g Tietze LF, Hungerland T, Depken T, Maaß C, Stalke D. Synlett 2012; 23: 2516
    • 3h Leibeling M, Pawliczek M, Kratzert D, Stalke D, Werz DB. Org. Lett. 2012; 14: 346
    • 3i Wallbaum J, Neufeld R, Stalke D, Werz DB. Angew. Chem. Int. Ed. 2013; 52: 13243 ; Angew. Chem. 2013, 125, 13485
    • 4a Sigman MS, Schultz MJ. Org. Biomol. Chem. 2004; 2: 2551
    • 4b Kotov V, Scarborough CC, Stahl SS. Inorg. Chem. 2007; 46: 1910
    • 4c Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
    • 4d Le Bras J, Muzart J. Chem. Rev. 2011; 111: 1170
    • 4e Neufeldt SR, Sanford MS. Acc. Chem. Res. 2012; 45: 936
    • 4f Broggini G, Beccalli EM, Fasana A, Gazzola S. Beilstein J. Org. Chem. 2012; 8: 1730
    • 4g Tietze LF, Hungerland T, Düfert A, Objartel I, Stalke D. Chem. Eur. J. 2012; 18: 3286
    • 5a Tietze LF, Lotz F. Eur. J. Org. Chem. 2006; 4676
    • 5b Gericke KM, Chai DI, Bieler N, Lautens M. Angew. Chem. Int. Ed. 2009; 48: 1447; Angew. Chem. 2009, 121, 1475
    • 5c Tietze LF, Hungerland T, Depken C, Maaß C, Stalke D. Synlett 2012; 23: 2516
  • 6 Phillipson JD, Roberts MF, Zenk MH. The Chemistry and Biology of Isoquinoline Alkaloids . Springer; Berlin: 1985
  • 7 Bentley KW. Nat. Prod. Rep. 2006; 23: 444
    • 8a Scott JD, Williams RM. J. Am. Chem. Soc. 2002; 124: 2951
    • 8b Magnus P, Matthews KS, Lynch V. Org. Lett. 2003; 5: 2181
    • 8c Kwon S, Myers AG. J. Am. Chem. Soc. 2005; 127: 16796
    • 8d Magnus P, Matthews KS. J. Am. Chem. Soc. 2005; 127: 12476
    • 8e Chen J, Chen X, Bois-Choussy M, Zhu J. J. Am. Chem. Soc. 2006; 128: 87
  • 9 Mueller S, Herzog B, Quass K. WO2006034968, 2006
  • 10 Britten NJ, Burns JW, Hallberg JW, Waldron NA, Watts JL. WO2004082588, 2004
    • 11a Thangthong AM, Prachumrak N, Namuangruk S, Jungsuttiwong S, Keawin T, Sudyoadsuk T, Promarak V. Eur. J. Org. Chem. 2012; 5263
    • 11b Baheti A, Thomas KR. J, Lee C.-P, Li C.-T, Ho K.-C. J. Mater. Chem. A 2014; 2: 5766
    • 12a Robertson DW, Katzenellenbogen JA, Hayes JR, Katzenellenbogen BS. J. Med. Chem. 1982; 25: 167 ; and references therein
    • 12b McKinley NF, O’Shea DF. J. Org. Chem. 2006; 71: 9552
    • 12c Shimizu K, Takimoto M, Mori M, Sato Y. Synlett 2006; 3182
    • 13a Caturla F, Amat M, Reinoso RF, Cordoba M, Warrellow G. Bioorg. Med. Chem. Lett. 2006; 16: 3209
    • 13b Wadman M. Nature 2006; 440: 277
  • 14 Yu H, Richey RN, Carson MW, Coghlan MJ. Org. Lett. 2006; 8: 1685
    • 15a Koumura N, Zijlstra RW. J, van Delden RA, Harada N, Feringa BL. Nature 1999; 401: 152
    • 15b Feringa BL, van Delden RA, Koumura N, Geertsema EM. Chem. Rev. 2000; 100: 1789
    • 15c Koumura N, Geertsema EM, van Gelder MB, Meetsma A, Feringa BL. J. Am. Chem. Soc. 2002; 124: 5037
    • 16a ter Wiel MK. J, van Delden RA, Meetsma A, Feringa BL. J. Am. Chem. Soc. 2003; 125: 15076
    • 16b Vicario J, Meetsma A, Feringa BL. Chem. Commun. 2005; 5910
    • 16c Vicario J, Walko M, Meetsma A, Feringa BL. J. Am. Chem. Soc. 2006; 128: 5127
    • 17a Nandakumar A, Perumal PT. Org Lett. 2013; 15: 382
    • 17b Naveen K, Muralidharan D, Perumal PT. Eur. J. Org. Chem. 2014; 1172